Арифметические и логические основы работы компьютера процессор. Реферат: Арифметические основы работы ЭВМ 6 арифметические и логические основы работы компьютера

Система счисления - это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 10 2 + 5 10 1 + 7 10 0 + 7 10 -1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе.

За основание системы можно принять любое натуральное число - два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

a n-1 q n-1 + a n-2 q n-2 + ... + a 1 q 1 + a 0 q 0 + a -1 q -1 + ... + a -m q -m ,

где a i – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвижением цифры называют замену её следующей по величине.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0.

Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.

Применяя это правило, запишем первые десять целых чисел

в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;

в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;

в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;

восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.

Кроме десятичной широко используются системы с основанием, являющимся целойстепенью числа 2, а именно:

двоичная (используются цифры 0, 1);

восьмеричная (используются цифры 0, 1, ..., 7);

шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел - от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления.

Компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:

· для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток - нет тока, намагничен - не намагничен и т.п.), а не, например, с десятью, - как в десятичной;

· представление информации посредством только двух состояний надежно и помехоустойчиво;

· возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

· двоичная арифметика намного проще десятичной.

Недостаток двоичной системы - быстрый рост числа разрядов, необходимых для записи чисел.Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи. Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

Например:

Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

Пpи переводе правильной десятичной дpоби в систему счисления с основанием q необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть пpоизведения. Число в новой системе счисления записывается как последовательность полученных целых частей пpоизведения.

Умножение пpоизводится до тех поp, пока дpобная часть пpоизведения не станет pавной нулю. Это значит, что сделан точный пеpевод. В пpотивном случае пеpевод осуществляется до заданной точности. Достаточно того количества цифp в pезультате, котоpое поместится в ячейку.

Пример: Перевести число 0,35 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 0,35 10 = 0,01011 2 = 0,263 8 = 0,59 16 .

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны - это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

Сложение в шестнадцатеричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.

Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F 16 +7 16 +3 16 Ответ: 5+7+3 = 25 10 = 11001 2 = 31 8 = 19 16 . Проверка: 11001 2 = 2 4 + 2 3 + 2 0 = 16+8+1=25 31 8 = 3*8 1 + 1*8 0 = 24 + 1 = 25 19 16 = 1*16 1 + 9*16 0 = 16+9 = 25.

Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Литература

1. Александров П.С. Введение в теорию множеств и общую топологию. – М.: «Наука», Главная редакция физико-математической литературы, 1977.

2. Стол Роберт Р. Множества. Логика. Аксиоматические теории. / Под ред. Шихановича. М.: «Просвещение», 1969.

3. Верещагин Н.К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств. – М.: МЦНМО, 1999.

4. Новиков П.С. Элементы математической логики. – М.: Наука, 1973. 400с.

5. Клини С. Математическая логика. – М.: Мир, 1973, 480с.

6. Краткий словарь по логике / Д.П. Горский, А.А. Ивин, А.Л. Никифоров;

7. Королев В.Т., Ловцов Д.А., Радионов В.В. Учебно-методический комплекс. Информационные технологии в юридической деятельности – М.: РАП, 2013.

8. Королев В.Т., Ловцов Д.А., Радионов В.В. Информационные технологии в юридиче-ской деятельности / Под ред. Д.А. Ловцова. – М.: РАП, 2011.

9. Королев В. Т. Информационные технологии в юридической деятельности. Учебно-методические материалы для практических занятий. - М.: РАП, 2012. (имеется в классе персо-нальных компьютеров и на сайте академии).

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 10 2 + 5 10 1 + 7 10 0 + 7 10 -1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

За основание системы можно принять любое натуральное число - два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

a n-1 q n-1 + a n-2 q n-2 + ... + a 1 q 1 + a 0 q 0 + a -1 q -1 + ... + a -m q -m ,

где a i – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

Например:

Как порождаются целые числа в позиционных системах счисления?

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0.

Целые числа в любой системе счисления порождаются с помощью Правила счета :

Применяя это правило, запишем первые десять целых чисел

· в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;

· в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;

· в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;

· восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.

Какие системы счисления используют специалисты для общения с компьютером?

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2 , а именно :

· двоичная (используются цифры 0, 1);

· восьмеричная (используются цифры 0, 1, ..., 7);

· шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел - от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

10 - я 2 - я 8 - я 16 - я
10 - я 2 - я 8 - я 16 - я
A
B
C
D
E
F

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления.

Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

Сложение

Таблицы сложения легко составить, используя Правило Счета.

Сложение в шестнадцатиричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.

Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F 16 +7 16 +3 16 Ответ: 5+7+3 = 25 10 = 11001 2 = 31 8 = 19 16 . Проверка: 11001 2 = 2 4 + 2 3 + 2 0 = 16+8+1=25, 31 8 = 3*8 1 + 1*8 0 = 24 + 1 = 25, 19 16 = 1*16 1 + 9*16 0 = 16+9 = 25.

Пример 3. Сложим числа 141,5 и 59,75.

Ответ: 141,5 + 59,75 = 201,25 10 = 11001001,01 2 = 311,2 8 = C9,4 16

Проверка. Преобразуем полученные суммы к десятичному виду:
11001001,01 2 = 2 7 + 2 6 + 2 3 + 2 0 + 2 -2 = 201,25
311,2 8 = 3*8 2 + 1 8 1 + 1*8 0 + 2*8 -1 = 201,25
C9,4 16 = 12*16 1 + 9*16 0 + 4*16 -1 = 201,25

Вычитание

Пример 4. Вычтем единицу из чисел 10 2 , 10 8 и 10 16

Пример 5. Вычтем единицу из чисел 100 2 , 100 8 и 100 16 .

Пример 6. Вычтем число 59,75 из числа 201,25.

Ответ: 201,25 10 – 59,75 10 = 141,5 10 = 10001101,1 2 = 215,4 8 = 8D,8 16 .

Проверка. Преобразуем полученные разности к десятичному виду:
10001101,1 2 = 2 7 + 2 3 + 2 2 + 2 0 + 2 –1 = 141,5;
215,4 8 = 2*8 2 + 1*8 1 + 5*8 0 + 4*8 –1 = 141,5;
8D,8 16 = 8*16 1 + D*16 0 + 8*16 –1 = 141,5.

Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 7. Перемножим числа 5 и 6.

Ответ: 5*6 = 30 10 = 11110 2 = 36 8 .


11110 2 = 2 4 + 2 3 + 2 2 + 2 1 = 30;
36 8 = 3 8 1 + 6 8 0 = 30.

Пример 8. Перемножим числа 115 и 51.

Ответ: 115*51 = 5865 10 = 1011011101001 2 = 13351 8 .

Проверка. Преобразуем полученные произведения к десятичному виду:
1011011101001 2 = 2 12 + 2 10 + 2 9 + 2 7 + 2 6 + 2 5 + 2 3 + 2 0 = 5865;
13351 8 = 1*8 4 + 3*8 3 + 3*8 2 + 5*8 1 + 1*8 0 = 5865.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Пример 9. Разделим число 30 на число 6.

Ответ: 30: 6 = 5 10 = 101 2 = 5 8 .

Пример 10. Разделим число 5865 на число 115.

Восьмеричная: 13351 8:163 8

Ответ: 5865: 115 = 51 10 = 110011 2 = 63 8 .


110011 2 = 2 5 + 2 4 + 2 1 + 2 0 = 51; 63 8 = 6*8 1 + 3*8 0 = 51.

Пример 11. Разделим число 35 на число 14.

Восьмеричная: 43 8: 16 8

Ответ: 35: 14 = 2,5 10 = 10,1 2 = 2,4 8 .

Проверка. Преобразуем полученные частные к десятичному виду:
10,1 2 = 2 1 + 2 -1 = 2,5;
2,4 8 = 2*8 0 + 4*8 -1 = 2,5.

Сложение и вычитание

При сложении обратных кодов чисел А и В имеют место четыре основных и два особых случая:

1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:

Получен правильный результат.

Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111 = –7 10 .

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.

Полученный первоначально неправильный результат (обратный код числа –11 10 вместо обратного кода числа –10 10) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы.

При переводе результата в прямой код биты цифровой части числа инвертируются: 1 0001010 = –10 10 .

При сложении может возникнуть ситуация, когда старшие разряды результата операции не помещаются в отведенной для него области памяти. Такая ситуация называется переполнением разрядной сетки формата числа . Для обнаружения переполнения и оповещения о возникшей ошибке в компьютере используются специальные средства. Ниже приведены два возможных случая переполнения.

5. А и В положительные, сумма А+В больше, либо равна 2 n–1 , где n – количество разрядов формата чисел (для однобайтового формата n=8, 2 n–1 = 27 = 128). Например:

Семи разрядов цифровой части числового формата недостаточно для размещения восьмиразрядной суммы (162 10 = 10100010 2), поэтому старший разряд суммы оказывается в знаковом разряде. Это вызывает несовпадение знака суммы и знаков слагаемых, что является свидетельством переполнения разрядной сетки.

Здесь знак суммы тоже не совпадает со знаками слагаемых, что свидетельствует о переполнении разрядной сетки.

Все эти случаи имеют место и при сложении дополнительных кодов чисел:

1. А и В положительные. Здесь нет отличий от случая 1, рассмотренного для обратного кода.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется единица: 1 0000110 + 1 = 1 0000111 = –7 10 .

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

4. А и В отрицательные. Например:

Получен правильный результат в дополнительном коде. Единицу переноса из знакового разряда компьютер отбрасывает.

Случаи переполнения для дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает:

· на преобразование отрицательного числа в обратный код компьютер затрачивает меньше времени, чем на преобразование в дополнительный код, так как последнее состоит из двух шагов - образования обратного кода и прибавления единицы к его младшему разряду;

· время выполнения сложения для дополнительных кодов чисел меньше, чем для их обратных кодов, потому что в таком сложении нет переноса единицы из знакового разряда в младший разряд результата.

Умножение и деление

Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. В процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции - окончательный результат.

Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.

Для иллюстрации умножим 110011 2 на 101101 2 .

Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.

Сложение и вычитание

При сложении и вычитании сначала производится подготовительная операция, называемая выравниванием порядков.

В результате выравнивания порядков одноименные разряды чисел оказываются расположенными в соответствующих разрядах обоих регистров, после чего мантиссы складываются или вычитаются.

В случае необходимости полученный результат нормализуется путем сдвига мантиссы результата влево. После каждого сдвига влево порядок результата уменьшается на единицу.

Пример 1. Сложить двоичные нормализованные числа 0.10111 2 –1 и 0.11011*2 10 . Разность порядков слагаемых здесь равна трем, поэтому перед сложением мантисса первого числа сдвигается на три разряда вправо:

Пример 2. Выполнить вычитание двоичных нормализованных чисел 0.10101*2 10 и 0.11101*2 1 . Разность порядков уменьшаемого и вычитаемого здесь равна единице, поэтому перед вычитанием мантисса второго числа сдвигается на один разряд вправо:

Результат получился не нормализованным, поэтому его мантисса сдвигается влево на два разряда с соответствующим уменьшением порядка на две единицы: 0.1101*2 0 .

Умножение

Пример 3. Выполнить умножение двоичных нормализованных чисел:

(0.11101*2 101)*(0.1001*2 11) = (0.11101*0.1001)* 2 (101+11) = 0.100000101*2 1000 .

Деление

Пример 4. Выполнить деление двоичных нормализованных чисел:

0.1111*2 100: 0.101*2 11 = (0.1111: 0.101) * 2 (100–11) = 1.1*2 1 = 0.11 2 10 .

Использование представления чисел с плавающей точкой существенно усложняет схему арифметико-логического устройства.

Упражнения

4.1. Используя Правило Счета, запишите первые 20 целых чисел в десятичной, двоичной, троичной, пятеричной и восьмеричной системах счисления.
[ Ответ ]

4.2. Какие целые числа следуют за числами:

[ Ответ ]

4.4. Какой цифрой заканчивается четное двоичное число? Какой цифрой заканчивается нечетное двоичное число? Какими цифрами может заканчиваться четное троичное число?
[ Ответ ]

4.5. Какое наибольшее десятичное число можно записать тремя цифрами:

o а) в двоичной системе;

o б) в восьмеричной системе;

o в) в шестнадцатеричной системе?

4.6. В какой системе счисления 21 + 24 = 100?

Решение. Пусть x - искомое основание системы счисления. Тогда 100 x = 1 · x 2 + 0 · x 1 + 0 · x 0 , 21 x = 2 · x 1 + 1 · x 0 , 24 x = 2 · x 1 + 4 · x 0 . Таким образом, x 2 = 2x + 2x + 5 или x 2 - 4x - 5 = 0. Положительным корнем этого квадратного уравнения является x = 5.
Ответ. Числа записаны в пятеричной системе счисления.

4.7. В какой системе счисления справедливо следующее:

o а) 20 + 25 = 100;

o б) 22 + 44 = 110?

4.8. Десятичное число 59 эквивалентно числу 214 в некоторой другой системе счисления. Найдите основание этой системы.
[ Ответ ]

4.9. Переведите числа в десятичную систему, а затем проверьте результаты, выполнив обратные переводы:

[ Ответ ]

4.10. Переведите числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 125 10 ; б) 229 10 ; в) 88 10 ; г) 37,25 10 ; д) 206,125 10 .
[ Ответ ]

4.11. Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 1001111110111,0111 2 ; г) 1011110011100,11 2 ;
б) 1110101011,1011101 2 ; д) 10111,1111101111 2 ;
в) 10111001,101100111 2 ; е) 1100010101,11001 2 .

[ Ответ ]

4.12. Переведите в двоичную и восьмеричную системы шестнадцатеричные числа:

а) 2СE 16 ; б) 9F40 16 ; в) ABCDE 16 ; г) 1010,101 16 ; д) 1ABC,9D 16 .
[ Ответ ]

4.13. Выпишите целые числа:

o а) от 101101 2 до 110000 2 в двоичной системе;

o б) от 202 3 до 1000 3 в троичной системе;

o в) от 14 8 до 20 8 в восьмеричной системе;

o г) от 28 16 до 30 16 в шестнадцатеричной системе.

4.14. Для десятичных чисел 47 и 79 выполните цепочку переводов из одной системы счисления в другую:

[ Ответ ]

4.15. Составьте таблицы сложения однозначных чисел в троичной и пятеричной системах счисления.
[ Ответ ]

4.16. Составьте таблицы умножения однозначных чисел в троичной и пятеричной системах счисления.
[ Ответ ]

4.17. Сложите числа, а затем проверьте результаты, выполнив соответствующие десятичные сложения:

[ Ответ ]

4.18. В каких системах счисления выполнены следующие сложения? Найдите основания каждой системы:

[ Ответ ]

4.19. Найдите те подстановки десятичных цифр вместо букв, которые делают правильными выписанные результаты (разные цифры замещаются разными буквами):

[ Ответ ]

4.20. Вычтите:

[ Ответ ]

4.21. Перемножьте числа, а затем проверьте результаты, выполнив соответствующие десятичные умножения:

а) 101101 2 и 101 2 ; д) 37 8 и 4 8 ;
б) 111101 2 и 11,01 2 ; е) 16 8 и 7 8 ;
в) 1011,11 2 и 101,1 2 ; ж) 7,5 8 и 1,6 8 ;
г) 101 2 и 1111,001 2 ; з) 6,25 8 и 7,12 8 .

[ Ответ ]

4.22. Разделите 10010110 2 на 1010 2 и проверьте результат, умножая делитель на частное.
[ Ответ ]

4.23. Разделите 10011010100 2 на 1100 2 и затем выполните соответствующее десятичное и восьмеричное деление.
[ Ответ ]

4.24. Вычислите значения выражений:

o а) 256 8 + 10110,1 2 * (60 8 + 12 10) - 1F 16 ;

o б) 1AD 16 - 100101100 2: 1010 2 + 217 8 ;

o в) 1010 10 + (106 16 - 11011101 2) 12 8 ;

o г) 1011 2 * 1100 2: 14 8 + (100000 2 - 40 8).

4.25. Расположите следующие числа в порядке возрастания:

o а) 74 8 , 110010 2 , 70 10 , 38 16 ;

o б) 6E 16 , 142 8 , 1101001 2 , 100 10 ;

o в) 777 8 , 101111111 2 , 2FF 16 , 500 10 ;

o г) 100 10 , 1100000 2 , 60 16 , 141 8 .

4.26. Запишите уменьшающийся ряд чисел +3, +2, ..., -3 в однобайтовом формате:

o а) в прямом коде;

o б) в обратном коде;

o в) в дополнительном коде.

4.27. Запишите числа в прямом коде (формат 1 байт):

а) 31; б) -63; в) 65; г) -128.
[ Ответ ]

4.28. Запишите числа в обратном и дополнительном кодах (формат 1 байт):

а) -9; б) -15; в) -127; г) -128.
[ Ответ ]

4.29. Найдите десятичные представления чисел, записанных в дополнительном коде:

а) 1 1111000; б) 1 0011011; в) 1 1101001; г) 1 0000000.
[ Ответ ]

4.30. Найдите десятичные представления чисел, записанных в обратном коде:

а) 1 1101000; б) 1 0011111; в) 1 0101011; г) 1 0000000.
[ Ответ ]

4.31. Выполните вычитания чисел путем сложения их обратных (дополнительных) кодов в формате 1 байт. Укажите, в каких случаях имеет место переполнение разрядной сетки:

а) 9 - 2; г) -20 - 10; ж) -120 - 15;
б) 2 - 9; д) 50 - 25; з) -126 - 1;
в) -5 - 7; е) 127 - 1; и) -127 - 1.

[ Ответ ]

Лекция 4. Арифметические основы компьютеров


АРИФМЕТИЧЕСКИЕ И ЛОГИЧЕСКИЕ ОСНОВЫ РАБОТЫ КОМПЬЮТЕРА
АРИФМЕТИЧЕСКИЕ ОСНОВЫ ЭВМ
В настоящее время в обыденной жизни для кодирования числовой информации используется десятичная система счисления с основанием 10, в которой используется 10 элементов обозначения: числа 0, 1, 2, … 8, 9. В первом (младшем) разряде указывается число единиц, во втором - десятков, в третьем - сотен и т.д.; иными словами, в каждом следующем разряде вес разрядного коэффициента увеличивается в 10 раз.
В цифровых устройствах обработки информации используется двоичная система счисления с основанием 2, в которой используется два элемента обозначения: 0 и 1. Веса разрядов слева направо от младших разрядов к старшим увеличиваются в 2 раза, то есть имеют такую последовательность: 8421.
В общем виде эта последовательность имеет вид:
…252423222120,2-12-22-3…
и используется для перевода двоичного числа в десятичное.
Например, двоичное число 101011 эквивалентно десятичному числу 43:
25·1+24·0+23·1+22·0+21·1+20·1=43
В цифровых устройствах используются специальные термины для обозначения различных по объёму единиц информации: бит, байт, килобайт, мегабайт и т.д.
Бит или двоичный разряд определяет значение одного какого-либо знака в двоичном числе. Например, двоичное число 101 имеет три бита или три разряда. Крайний справа разряд, с наименьшим весом, называется младшим, а крайний слева, с наибольшим весом, - старшим.
Байт определяет 8-разрядную единицу информацию, 1 байт=23 бит, например, 10110011 или 01010111 и т.д., 1 кбайт = 210 байт, 1 Мбайт = 210 кбайт = 220 байт.
Для представления многоразрядных чисел в двоичной системе счисления требуется большое число двоичных разрядов. Запись облегчается, если использовать шестнадцатеричную систему счисления.
Основанием шестнадцатеричной системы счисления является число 16=24, в которой используется 16 элементов обозначения: числа от 0 до 9 и буквы A, B, C, D, E, F.
Для перевода двоичного числа в шестнадцатеричное достаточно двоичное число разделить на четырёхбитовые группы: целую часть справа налево, дробную - слева направо от запятой. Крайние группы могут быть неполными.
Каждая двоичная группа представляется соответствующим шестнадцатеричным символом (таблица 1). Например, двоичное число 0101110000111001 в шестнадцатеричной системе выражается числом 5C39.
Таблица 1

Пользователю наиболее удобна десятичная система счисления. Поэтому многие цифровые устройства, работая с двоичными числами, осуществляют приём и выдачу пользователю десятичных чисел. При этом применяется двоично-десятичный код.
Двоично-десятичный код образуется заменой каждой десятичной цифры числа четырёхразрядным двоичным представлением этой цифры в двоичном коде (см. таблицу 1). Например, число 15 представляется как 00010101 BCD (Binary Coded Decimal). При этом в каждом байте располагаются две десятичные цифры. Заметим, что двоично-десятичный код при таком преобразовании не является двоичным числом, эквивалентным десятичному числу.
ЛОГИЧЕСКИЕ ОСНОВЫ ЭВМ
Алгебра логики (булева алгебра) – это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.
Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, булева алгебра делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1, либо 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.
Что такое простое логическое высказывание? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.
ЛОГИЧЕСКИЕ ОПЕРАЦИИ.
ДИЗЪЮНКЦИЯ, КОНЪЮНКЦИЯ И ОТРИЦАНИЕ
Так как же связываются между собой простые логические высказывания, образуя сложные? В естественном языке мы используем различные союзы и другие части речи. Например, «и», «или», «либо», «не», «если», «то», «тогда». Пример сложных высказываний: «у него есть знания и навыки», «она приедет во вторник, либо в среду», «я буду играть тогда, когда сделаю уроки», «5 не равно 6». Как мы решаем, что нам сказали правду или нет? Как-то логически, даже где-то неосознанно, исходя из предыдущего жизненного опыта, мы понимает, что правда при союзе «и» наступает в случае правдивости обоих простых высказываний. Стоит одному стать ложью и все сложное высказывание будет лживо. А вот, при связке «либо» должно быть правдой только одно простое высказывание, и тогда все выражение станет истинным.
Булева алгебра переложила этот жизненный опыт на аппарат математики, формализовала его, ввела жесткие правила получения однозначного результата. Союзы стали называться здесь логическими операторами.
Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем.
Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают &, дизъюнкцию - ||, а отрицание - чертой над переменной, обозначающей высказывание.
Название логической операции Логическая связка
Инверсия «не»;
«неверно, что»
Конъюнкция «и»; «а»; «но»; «хотя»
Дизъюнкция «или»
Конъюнкция
Рассмотрим два высказывания:
A = «Основоположником алгебры логики является Джордж Буль»,
B = «Исследования Клода Шеннона позволили применить алгебру логики в вычислительной технике».
Очевидно, новое высказывание «Основоположником алгебры логики является Джордж Буль, и исследования Клода Шеннона позволили применить алгебру логики в вычислительной технике» истинно только в том случае, когда одновременно истинны оба исходных высказывания.
Конъюнкция - логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.
Конъюнкцию также называют логическим умножением.
При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.
Для записи конъюнкции используются следующие знаки: И,ˆ,⋅,&.
Например: A И B, AˆB, A⋅B, A&B.
Конъюнкцию можно описать в виде таблицы, которую называют таблицей истинности:
A B A B
1 1 1
1 0 0
0 1 0
0 0 0
В таблице истинности перечисляются все возможные значения исходных высказываний (столбцы A и B), причём соответствующие им двоичные числа, как правило, располагают в порядке возрастания: 00, 01, 10, 11. В последнем столбце записан результат выполнения логической операции для соответствующих операндов.
Дизъюнкция
Рассмотрим два высказывания:
A = «Идея использования в логике математической символики принадлежит Готфриду Вильгельму Лейбницу»,
B = «Лейбниц является основоположником бинарной арифметики».
Очевидно, новое высказывание «Идея использования в логике математической символики принадлежит Готфриду Вильгельму Лейбницу или Лейбниц является основоположником бинарной арифметики» ложно только в том случае, когда одновременно ложны оба исходных высказывания.
Дизъюнкция - логическая операция, которая каждым двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.
Дизъюнкцию также называют логическим сложением.
При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.
Для записи дизъюнкции используются следующие знаки: ИЛИ; V;|;+.
Например: A ИЛИ B; A∨B; A|B; A+B.
Дизъюнкция определяется следующей таблицей истинности:
A B A B
0 0 0
0 1 1
1 0 1
1 1 1
Инверсия
Инверсия - логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному.
Инверсию также называют логическим отрицанием.
Отрицание – это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.
Для записи инверсии используются следующие знаки: НЕ;¬;−Например: НЕ А; ¬А; А−.
Инверсия определяется следующей таблицей истинности:
A A0 0
0 1
1 0
1 1
Отрицанием высказывания «У меня дома есть компьютер» будет высказывание «Неверно, что у меня дома есть компьютер» или, что в русском языке то же самое, что «У меня дома нет компьютера».
Отрицанием высказывания «Я не знаю китайский язык» будет высказывание «Неверно, что я не знаю китайский язык» или, что в русском языке: «Я знаю китайский язык».
Отрицанием высказывания «Все юноши 8-х классов – отличники» является высказывание «Неверно, что все юноши 8-х классов – отличники», другими словами, «Не все юноши 8-х классов – отличники».
Таким образом, при построении отрицания к простому высказыванию либо используется речевой оборот «неверно, что...», либо отрицание строится к сказуемому, тогда к соответствующему глаголу добавляется частица «не».
Любое сложное высказывание можно записать и виде логического выражения – выражения, содержащего логические переменные, знаки логических операций и скобки.
Логические операции в логическом выражении выполняются в следующей очерёдности: инверсия, конъюнкция, дизъюнкция.
Изменить порядок выполнения операций можно с помощью расстановки скобок.
Логические операции при выполнении имеют следующий приоритет: инверсия, конъюнкция, дизъюнкция.
Таблицы истинности
Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

ЛОГИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРА
В ЭВМ используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, триггеры, сумматоры.
Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в ЭВМ системе счисления. Как известно она двоичная. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.
Переключательные схемы
В ЭВМ применяются электрические схемы, состоящие из множества переключателей.
Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае – ток проходит, во втором – нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.
Вентили, триггеры и сумматоры
Вентиль представляет собой логический элемент, который принимает одни двоичные значения и выдает другие в зависимости от своей реализации. Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.Триггеры и сумматоры – это относительно сложные устройства, состоящие из более простых элементов – вентилей.
Триггер способен хранить один двоичный разряд, за счет того, что может находиться в двух устойчивых состояниях. В основном триггеры используется в регистрах процессора.
Сумматоры широко используются в арифметико-логических устройствах (АЛУ) процессора и выполняют суммирование двоичных разрядов.
Логические элементы. Вентили
В основе построения компьютеров, а точнее аппаратного обеспечения, лежат так называемые вентили. Они представляют собой достаточно простые элементы, которые можно комбинировать между собой, создавая тем самым различные схемы.
Одни схемы подходят для осуществления арифметических операций, а на основе других строят различную память ЭВМ.
Вентель - это устройство, которое выдает результат булевой операции от введенных в него данных (сигналов).
Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот. Т.е. получаем вентиль НЕ.
Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕ и И-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит (выдает высокое или низкое напряжение) от входных сигналов.
В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя.
Выходной сигнал вентиля можно выражать как функцию от входных.
Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.

Сумматор и полусумматор
Арифметико-логическое устройство процессора (АЛУ) обязательно содержит в своем составе такие элементы как сумматоры. Эти схемы позволяют складывать двоичные числа.
Как происходит сложение? Допустим, требуется сложить двоичные числа 1001 и 0011. Сначала складываем младшие разряды (последние цифры): 1+1=10. Т.е. в младшем разряде будет 0, а единица – это перенос в старший разряд. Далее: 0 + 1 + 1(от переноса) = 10, т.е. в данном разряде снова запишется 0, а единица уйдет в старший разряд. На третьем шаге: 0 + 0 + 1(от переноса) = 1. В итоге сумма равна 1100.
Полусумматор
Теперь не будем обращать внимание на перенос из предыдущего разряда и рассмотрим только, как формируется сумма текущего разряда. Если были даны две единицы или два нуля, то сумма текущего разряда равна 0. Если одно из двух слагаемых равно единице, то сумма равна единицы. Получить такие результаты можно при использовании вентиля ИСКЛЮЧАЮЩЕГО ИЛИ.
Перенос единицы в следующий разряд происходит, если два слагаемых равны единице. И это реализуемо вентилем И.
Тогда сложение в пределах одного разряда (без учета возможной пришедшей единицы из младшего разряда) можно реализовать изображенной ниже схемой, которая называется полусумматором. У полусумматора два входа (для слагаемых) и два выхода (для суммы и переноса). На схеме изображен полусумматор, состоящий из вентилей ИСКЛЮЧАЮЩЕЕ ИЛИ и И.

Сумматор
В отличие от полусумматора сумматор учитывает перенос из предыдущего разряда, поэтому имеет не два, а три входа.
Чтобы учесть перенос приходится схему усложнять. По-сути она получается, состоящей из двух полусумматоров.

Рассмотрим один из случаев. Требуется сложить 0 и 1, а также 1 из переноса. Сначала определяем сумму текущего разряда. Судя по левой схеме ИСКЛЮЧАЮЩЕЕ ИЛИ, куда входят a и b, на выходе получаем единицу. В следующее ИСКЛЮЧАЮЩЕЕ ИЛИ уже входят две единицы. Следовательно, сумма будет равна 0.
Теперь смотрим, что происходит с переносом. В один вентиль И входят 0 и 1 (a и b). Получаем 0. Во второй вентиль (правее) заходят две единицы, что дает 1. Проход через вентиль ИЛИ нуля от первого И и единицы от второго И дает нам 1.
Проверим работу схемы простым сложением 0 + 1 + 1 = 10. Т.е. 0 остается в текущем разряде, и единица переходит в старший. Следовательно, логическая схема работает верно.
Работу данной схемы при всех возможных входных значениях можно описать следующей таблицей истинности.

Триггер как элемент памяти. Схема RS-триггера
Память (устройство, предназначенное для хранения данных и команд) является важной частью компьютера. Можно сказать, что она его и определяет: если вычислительное устройство не имеет памяти, то оно уже не компьютер.
Элементарной единицей компьютерной памяти является бит. Поэтому требуется устройство, способное находиться в двух состояниях, т.е. хранить единицу или ноль. Также это устройство должно уметь быстро переключаться из одного состояния в другое под внешним воздействием, что дает возможность изменять информацию. Ну и наконец, устройство должно позволять определять его состояние, т.е. предоставлять во вне информацию о своем состоянии.
Устройством, способным запоминать, хранить и позволяющим считывать информацию, является триггер. Он был изобретен в начале XX века Бонч-Бруевичем.
Разнообразие триггеров весьма велико. Наиболее простой из них так называемый RS-триггер, который собирается из двух вентилей. Обычно используют вентили ИЛИ-НЕ или И-НЕ.
RS-триггер на вентилях ИЛИ-НЕ
RS-триггер «запоминает», на какой его вход подавался сигнал, соответствующий единице, в последний раз. Если сигнал был подан на S-вход, то триггер на выходе постоянно «сообщает», что хранит единицу. Если сигнал, соответствующий единице, подан на R-вход, то триггер на выходе имеет 0. Не смотря на то, что триггер имеет два выхода, имеется в виду выход Q. (Q с чертой всегда имеет противоположное Q значение.)
Другими словами, вход S (set) отвечает за установку триггера в 1, а вход R (reset) – за установку триггера в 0. Установка производится сигналом, с высоким напряжением (соответствует единице). Просто все зависит от того, на какой вход он подается.
Большую часть времени на входы подается сигнал равный 0 (низкое напряжение). При этом триггер сохраняет свое прежнее состояние.
Возможны следующие ситуации:
Q = 1, сигнал подан на S, следовательно, Q не меняется.
Q = 0, сигнал подан на S, следовательно, Q = 1.
Q = 1, сигнал подан на R, следовательно, Q = 0.
Q = 0, сигнал подан на R, следовательно, Q не меняется.
Ситуация, при которой на оба входа подаются единичные сигналы, недопустима.
Как триггер сохраняет состояние? Допустим, триггер выдает на выходе Q логический 0. Тогда судя по схеме, этот 0 возвращается также и в верхний вентиль, где инвертируется (получается 1) и уже в этом виде передается нижнему вентилю. Тот в свою очередь снова инвертирует сигнал (получается 0), который и имеется на выходе Q. Состояние триггера сохраняется, он хранит 0.
Теперь, допустим, был подан единичный сигнал на вход S. Теперь в верхний вентиль входят два сигнала: 1 от S и 0 от Q. Поскольку вентиль вида ИЛИ-НЕ, то на выходе из него получается 0. Ноль идет на нижний вентиль, там инвертируется (получается 1). Сигнал на выходе Q становится соответствующим 1.

Для автоматизации работы с данными, которые относятся к разным типам, унифицируют их форму представления. Это можно сделать с помощью кодирования данных на единой основе. В быту используют такие системы кодировки, как азбука Морзе, Брайля, коды морских сигналов. Основное понятие арифметики это число.Число– абстрактное выражение количества. Компьютер обрабатывает информацию, представленную только в числовой форме. Он оперирует с кодами и числами, представленными в некоторойсистеме счисления.

Система счисления– способ представления чисел(правило записи и получения чисел), с помощью фиксированного набора символов, обозначающих цифры. По способу представления чисел системы счисления разделяются на позиционные и непозиционные.

Непозиционныесистемы для записи числа используют множество символов. Значение символа не зависит от местоположения его в числе(римская СС).

Позиционная система счисления– когда от позиции цифры в числе зависит ее вес(555 –единицы, десятки, сотни). Всякая позиционная СС характеризуетсяоснованием,т.е. количеством цифр, используемых для записи числа. За основание СС можно принять любое натуральное число.

10ая– использует 10 цифр → 0, 1… 9

2ая– 2 цифры → 0, 1

Люди предпочитают 10ую(это удобно, видимо потому, что с древних времен считали по пальцам).

В вычислительной технике система кодирования основана на представлении данных в двоичной системе счисления. Компьютеры используют 2уюсистему, т.к. имеется ряд преимуществ:

Для ее реализации нужны устройства всего с двумя устойчивыми состояниями (есть ток, нет тока). Это надежнее, чем, например, 10ая;

возможно применение аппарата булевой алгебры;

двоичная арифметика проще десятичной;

представление информации с помощью 2-х состояний более надежно.

Недостаток: - быстрый рост разрядов.

В компьютере используются также 8аяи 16аясистемы.

Перевод чисел из 10ойв 2уюи наоборот выполняет машина.

При вводе информация кодируется, при выводе декодируется.

Обозначение цифр в 2ой системе:0, 1, 10, 11(3), 100(4), 101(5), 110(6), 111(7), 1000(8), 1001(9), 1010(10)и т.д.

Обозначение цифр в 8-ой системе: 0, 1, 2 … 7, 10(8), 11(9), 12(10)……17(15), 20(16), 21(17)и т.д.

Обозначение цифр в 16ой системе: 0, 1, 2 … 9, A(10), B(11),C(12) ... F(15), 10(16), 11(17) и т. д.

Целое число в позиционной СС может быть представлено в виде:

Aq=an-1qn-1+an-2qn-2+…+a0q0 , где

A– само число;

q– основание системы счисления;

ai– цифры, принадлежащие алфавиту данной системы счисления;

n– число целых разрядов числа.

Пусть в десятичной системе задано число37510.

Каждая позиция, занимаемая цифрами, называется разрядом числа.Разряды имеют названия иномера:разряд единиц (0), разряд десятков (1), разряд сотен (2). Названия определяютвес (012). Число в позиционной системе счисления представляет собой сумму степеней основания, умноженную на соответствующий коэффициент, который должен быть одной из цифр данной системы счисления. Достаточно просуммировать веса единичных разрядов.

37510=5*100+7*101+3*102 = 5+70+300=375

Это называется разложением числа по степеням основания.

Номера разрядов совпадают с показателем степени.

1011012=1*20+0*21+1*22+1*23+0*24+1*25=1+0+4+8+0+32=4510

101102=0*20+1*21+1*22+0*23+1*24=0+2+4+0+16=2210

1000012=1*20+0*21+0*22+0*23+0*24+1*25=1+32=3310

178=1*81+7*80= 8+1=1510

77648= 7*83+7*82+6*81+4*80 = 3584+448+48+4 =408410

1716= 1*161+7*160= 16+7 = 2310

3AF16=3*162+10*161+15*160=768+160+15=94310

1A16= 1*161+10*160= 16+10 = 2610

От того, какая система счисления будет использована в компьютере, зависят: скорость вычислений, емкость памяти, сложность алгоритмов выполнения арифметических и логических операций

Алгоритм перевода чисел делением на основание системы счисления: исходное число делим на основание новой СС. Затем получившееся частное опять делим на основание и т. д. , до тех пор, пока частное не станет меньше основания СС. Последнее частное и остатки записываем в порядке, обратном получению

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

    Обработка информации и вычислений в вычислительной машине. Непозиционные и позиционные системы счисления. Примеры перевода десятичного целого и дробного числа в двоичную систему счисления. Десятично-шестнадцатеричное и обратное преобразование чисел.

    контрольная работа , добавлен 21.08.2010

    Система счисления как способ записи информации с помощью заданного набора цифр. История развития различных систем счисления. Позиционные и непозиционные системы. Вавилонская, иероглифическая, римская система счисления. Система счисления майя и ацтеков.

    презентация , добавлен 05.05.2012

    Определение понятия и видов систем счисления - символического метода записи чисел, представления чисел с помощью письменных знаков. Двоичные, смешанные системы счисления. Перевод из одной системы счисления в другую и простейшие арифметические операции.

    курсовая работа , добавлен 16.01.2012

    Понятие и классификация систем счисления. Перевод чисел из одной системы счисления в другую. Перевод правильных и неправильных дробей. Выбор системы счисления для применения в ЭВМ. Навыки обращения с двоичными числами. Точность представления чисел в ЭВМ.

    реферат , добавлен 13.01.2011

    История систем счисления, позиционные и непозиционные системы счисления. Двоичное кодирование в компьютере. Перевод чисел из одной системы счисления в другую. Запись цифр в римской нумерации. Славянская нумерация, сохранившаяся в богослужебных книгах.

    презентация , добавлен 23.10.2015

    Двоичный код, особенности кодирования и декодирования информации. Система счисления как совокупность правил записи чисел с помощью определенного набора символов. Классификация систем счисления, специфика перевода чисел в позиционной системе счисления.

    презентация , добавлен 07.06.2011

    Система счисления как совокупность приемов и правил для обозначения и наименования чисел, ее разновидности и критерии классификации. Свойства позиционных однородных систем с естественным множеством цифр. Преобразование чисел из одной системы в другую.