Современные алгоритмы шифрования. Стеганография

Время жизни информации

§ При перехвате зашифрованного сообщения для некоторых типов алгоритмов шифрования можно подсчитать частоту появления определённых символов и сопоставить их с вероятностями появления определённых символов или их комбинаций (биграмм, триграмм и т. д.). Это в свою очередь может привести к однозначному дешифрованию (раскрытию) отдельных участков зашифрованного сообщения.

§ Наличие вероятных слов. Это слова или выражения, появление которых можно ожидать в перехваченном сообщении (например, для английского текста – «and», «the», «аrе» и др.).

§ Существуют методы, позволяющие сделать зашифрованные сообщения практически непригодными для статистического анализа и анализа посредством вероятных слов. К ним относятся следующие.

§ Рассеивание. Влияние одного символа открытого сообщения распространяется на множество символов зашифрованного сообщения. Этот метод хотя и приводит к увеличению количества ошибок при расшифровке, однако с его помощью удаётся скрыть статистическую структуру открытого сообщения.

§ Запутывание. Развитие принципа рассеивания. В нём влияние одного символа ключа распространяется на множество символов зашифрованного

сообщения.

§ Перемешивание. Основывается на использовании особых преобразований исходного сообщения, в результате чего вероятные последовательности как бы рассеиваются по всему пространству возможных открытых сообщений. Развитием этого метода явилось применение составных алгоритмов шифрования, состоящих из последовательности простых операций перестановки и подстановки.

Примерами изложенных методов служат стандарты шифрования DES и ГОСТ 28147-89.

Существует два основных типа алгоритмов шифрования:

§ алгоритмы симметричного шифрования;

§ алгоритмы асимметричного шифрования.

Симметричное шифрование .

Алгоритмы симметричного шифрования основаны на том, что и для шифрования сообщения, и для его расшифровки используется один и тот же (общий) ключ (рис. 1).

Одно из главных преимуществ симметричных методов – быстрота шифрования и расшифровки, а главный недостаток – необходимость передачи секретного значения ключа получателю.



Неизбежно возникаем проблема: как передать ключ и при этом не позволить злоумышленникам перехватить его.

Преимущества криптографии с симметричными ключами:

· Высокая производительность.

· Высокая стойкость. При прочих равных условиях стойкость криптографического алгоритма определяется длиной ключа. При длине ключа 256 бит необходимо произвести 10 77 переборов для его определения.

Недостатки криптографии с симметричными ключами.

§ Проблема распределения ключей. Так как для шифрования и расшифровки используется один и тот же ключ, требуются очень надёжные механизмы для их распределения (передачи).

§ Масштабируемость. Так как и отправитель, и получатель используют единый ключ, количество необходимых ключей возрастает в геометрической прогрессии в зависимости от числа участников коммуникации. Для обмена сообщениями между 10 пользователями необходимо иметь 45 ключей, а для 1000 пользователей – уже 499 500.

§ Ограниченное использование. Криптография с секретным ключом используется для шифрования данных и ограничения доступа к ним, с ее помощью невозможно обеспечить такие свойства информации, как аутентичность и

неотрекаемостъ.

Асимметричное шифрование

Асимметричные алгоритмы шифрования (криптография с открытыми ключами) предполагают использование двух ключей. Первый ключ – открытый. Он распространяется совершенно свободно, без всяких мер предосторожности. Второй, закрытый ключ, держится в секрете.

Любое сообщение, зашифрованное с использованием одного из этих ключей, может быть расшифровано только с использованием парного ему ключа. Как правило, отправитель сообщения пользуется открытым ключом получателя, а получатель – своим личным закрытым ключом.

В асимметричной схеме передачи шифрованных сообщений оба ключа являются производными от единого порождающего мастер-ключа. Когда два ключа сформированы на основе одного, они зависимы в математическом смысле, однако в силу вычислительной сложности ни один из них не может быть вычислен на основании другого. После того, как сформированы оба ключа (и открытый, и личный, закрытый), мастер-ключ уничтожается, и таким образом пресекается любая попытка восстановить в дальнейшем значения производных от него ключей.

Асимметричная схема идеально сочетается с использованием общедоступных сетей передачи сообщений (например, Интернет). Любой абонент сети может совершенно свободно переслать открытый ключ своему партнеру по переговорам, а последний, в роли отправителя сообщения, будет использовать этот ключ при шифровании отсылаемого сообщения (рис. 2). Это сообщение сможет расшифровать своим личным ключом только получатель сообщения, который отсылал раньше соответствующий открытый ключ. Злоумышленник, перехвативший такой ключ, сможет воспользоваться им только с единственной целью – передавать законному владельцу ключа какие-нибудь зашифрованные сообщения.

Недостатком асимметричной схемы являются большие затраты времени на шифрование и расшифровку, что не разрешает их использование для оперативного обмена пространными сообщениями в режиме диалога. Реализация методов асимметричного шифрования требует больших затрат процессорного времени. Поэтому в чистом виде криптография с открытыми ключами в мировой практике обычно не применяется.



Рис. 2. Асимметричная схема шифрования

Невозможно сравнивать, что лучше, симметричные или асимметричные алгоритмы шифрования. Отмечено, что симметричные криптографические алгоритмы имеют меньшую длину ключа и работают быстрее.

Криптография с секретным и криптография с открытыми ключами предназначены для решения абсолютно разных проблем. Симметричные алгоритмы хорошо подходят для шифрования данных, асимметричные реализуются в большинстве сетевых криптографических протоколов.

Наиболее широкое распространение получили методы, сочетающие достоинства обеих схем. Принцип работы комбинированных схем заключается в том, что для очередного сеанса обмена сообщениями генерируется симметричный (сеансовый) ключ. Затем этот ключ зашифровывается и пересылается с помощью асимметричной схемы. После завершения текущего сеанса переговоров симметричный ключ уничтожается.

Основные современные методы шифрования

Среди разнообразнейших способов шифрования можно выделить следующие основные методы:

  • - Алгоритмы замены или подстановки - символы исходного текста заменяются на символы другого (или того же) алфавита в соответствии с заранее определенной схемой, которая и будет ключом данного шифра. Отдельно этот метод в современных криптосистемах практически не используется из-за чрезвычайно низкой криптостойкости.
  • - Алгоритмы перестановки - символы оригинального текста меняются местами по определенному принципу, являющемуся секретным ключом. Алгоритм перестановки сам по себе обладает низкой криптостойкостью, но входит в качестве элемента в очень многие современные криптосистемы.
  • - Алгоритмы гаммирования - символы исходного текста складываются с символами некой случайной последовательности.
  • - Алгоритмы, основанные на сложных математических преобразованиях исходного текста по некоторой формуле. Многие из них используют нерешенные математические задачи. Например, широко используемый в Интернете алгоритм шифрования RSA основан на свойствах простых чисел.
  • - Комбинированные методы. Последовательное шифрование исходного текста с помощью двух и более методов.

Рассмотрим подробнее алгоритмы, построенные на сложных математических преобразованиях и комбинированные методы, как наиболее часто используемые для защиты данных в современных информационных системах.

Алгоритмы, основанные на сложных математических преобразованиях

Алгоритм RSA

Алгоритм RSA (по первым буквам фамилий его создателей Rivest - Shamir - Adleman) основан на свойствах простых чисел (причем очень больших). Простыми называются такие числа, которые не имеют делителей, кроме самих себя и единицы. А взаимно простыми называются числа, не имеющие общих делителей, кроме 1.

Для начала необходимо выбрать два очень больших простых числа (большие исходные числа нужны для построения больших криптостойких ключей. Например, Unix-программа ssh-keygen по умолчанию генерирует ключи длиной 1024 бита). Как результат перемножения р и q определяется параметр n. Затем выбирается случайное число е, причем оно должно быть взаимно простым с числом (n) = (р - 1)*(q - 1). Отыскивается такое число d, для которого верно соотношение

(e*d) mod (n) = 1.

Mod - остаток от деления, т. е. если e, умноженное на d, поделить (n), то в остатке должно получиться 1. Другими словами, числа (e*d - 1) и (n) должны делиться нацело.

Открытым ключом является пара чисел e и n, а закрытым - d и n. При шифровании исходный текст рассматривается как числовой ряд, и над каждым его числом, которое должно быть меньше n, совершается операция

C(i) = (M(i) e) mod n. (1)

В результате получается последовательность C(i), которая и составит криптотекст. Декодирование информации происходит по формуле

M(i) = (C(i) d) mod n. (2)

Как видно, расшифровка предполагает знание секретного ключа.

Рассмотрим пример на маленьких числах. Пусть р = 3, q = 7. Тогда n = = р*q = 21. Выберем е = 5. Из формулы (d*5) mod 12 = 1 вычисляем d = 17. Следовательно, открытый ключ 17, 21, секретный - 5, 21.

Зашифруем последовательность «2345»:

C 1 = 2 17 mod 21 = 11;

C 2 = 3 17 mod 21 = 12;

C 3 = 4 17 mod 21 = 16;

C 4 = 5 17 mod 21 = 17.

Криптотекст - 11 12 16 17. Проверим расшифровкой:

M 1 = 11 5 mod 21 = 2;

M 2 = 12 5 mod 21 = 3;

M 3 = 16 5 mod 21 = 4;

M 4 = 17 5 mod 21 = 5;

Как видно, результат совпал с изначальным открытым текстом.

Криптосистема RSA широко применяется в Интернете. Когда пользователи подсоединяются к защищенному серверу по протоколу SSL SSL (Secure Socket Layer), протокол защищенных сокетов - протокол, гарантирующий безопасную передачу данных по сети; комбинирует криптографическую систему с открытым ключом и блочное шифрование данных., устанавливает на свой ПК сертификат WebMoney либо подключается к удаленному серверу с помощью Oрen SSH или SecureShell, большинство даже не подозревает, что все эти программы применяют шифрование открытым ключом с использованием идей алгоритма RSA.

Действительно ли эта система так надежна?

С момента своего создания RSA постоянно подвергалась атакам типа brute-force attack (атака методом грубой силы Brute force («грубая сила») - атака, осуществляемая простым перебором всех возможных либо наиболее часто встречающихся ключей (паролей). Во втором случае brute force достаточно часто называют "атакой по словарю".). В 1978 г. авторы алгоритма опубликовали статью, где привели строку, зашифрованную только что изобретенным ими методом. Первому, кто расшифрует сообщение, было назначено вознаграждение в размере 100 долларов, но для этого требовалось разложить на два сомножителя 129-значное число. Это был первый конкурс на взлом RSA. Задачу решили только через 17 лет после публикации статьи.

Криптостойкость RSA основывается на том предположении, что исключительно трудно, если вообще реально, определить закрытый ключ из открытого. Для этого требовалось решить задачу о существовании делителей огромного целого числа. До сих пор ее аналитическими методами никто не решил, и алгоритм RSA можно взломать лишь путем полного перебора. Строго говоря, утверждение, что задача разложения на множители сложна и что взлом системы RSA труден, также не доказано.

Компания RSA (httр://www.rsa.ru) регулярно проводит конкурсы на взлом собственных (и не только собственных) шифров. Предыдущие конкурсы выиграла организация Distributed.net (httр://www.distributed.net), являющаяся Интернет-сообществом добровольцев.

Участники Distributed.net загружают к себе на ПК небольшую программу-клиент, которая подсоединяется к центральному серверу и получает кусочек данных для вычислений. Затем все данные загружаются на центральный сервер, и клиент получает следующий блок исходной информации. И так происходит до тех пор, пока все комбинации не будут перебраны. Пользователи, участники системы, объединяются в команды, а на сайте ведется рейтинг как команд, так и стран. Например, участвующей в конкурсе по взлому RC5-64 (блочный шифр компании RSA, использующий ключ длиной 64 бита) организации Distributed.net удалось осуществить взлом через пять лет (1757 дней) работы. За это время в проекте участвовали 327 856 пользователей и было перебрано более 15,268*10 18 вариантов ключа. Выяснилось, что была (не без юмора) зашифрована фраза «some things are better left unread» («некоторые вещи лучше оставлять непрочтенными»). Общие рекомендации по шифру RC5-64 таковы: алгоритм достаточно стоек для повседневных нужд, но шифровать им данные, остающиеся секретными на протяжении более пяти лет, не рекомендуется».

Вероятностное шифрование

Одной из разновидностей криптосистем с открытым ключом является вероятностное шифрование, разработанное Шафи Гольвассером и Сильвио Минелли. Его суть состоит в том, чтобы алгоритм шифрования Е подчинить вероятностным моделям. В чем же преимущества такого подхода? Для примера, в системе RSA не «маскируются» 0 и 1. Эту проблему успешно решают вероятностные алгоритмы, поскольку они ставят в соответствие открытому тексту М не просто криптотекст С, а некоторый элемент из множества криптотекстов СМ. При этом каждый элемент этого множества выбирается с некоторой вероятностью. Другими словами, для любого открытого текста М результат работы алгоритма Е будет случайной величиной. Может показаться, что в этом случае дешифровать информацию будет невозможно, но это совсем не так. Для того чтобы сделать возможной дешифровку, нужно, чтобы для разных открытых текстов М 1 и М 2 множества СМ 1 и СМ 2 не пересекались. Также хочется сказать, что вероятностные алгоритмы шифрования являются более надежными, нежели детерминированные. В этой области наиболее распространены вероятностное шифрование на основе RSA-функций и криптосистема Эль-Гамала.

Комбинированные методы шифрования

Одним из важнейших требований, предъявляемых к системе шифрования, является ее высокая криптостойкость. Однако ее повышение для любого метода шифрования приводит, как правило, к существенному усложнению самого процесса шифрования и увеличению затрат ресурсов (времени, аппаратных средств, уменьшению пропускной способности и т.п.), и как следствие - времени работы криптографических систем.

Достаточно эффективным средством повышения стойкости шифрования является комбинированное использование нескольких различных способов шифрования, т.е. последовательное шифрование исходного текста с помощью двух или более методов.

Как показали исследования, стойкость комбинированного шифрования не ниже произведения стойкостей используемых способов.

Строго говоря, комбинировать можно любые методы шифрования и в любом количестве, однако на практике наибольшее распространение получили следующие комбинации:

подстановка + гаммирование;

перестановка + гаммирование;

гаммирование + гаммирование;

подстановка + перестановка;

Типичным примером комбинированного шифра является национальный стандарт США криптографического закрытия данных (DES).

Криптографический стандарт DES

В 1973 г. Национальное бюро стандартов США начало разработку программы по созданию стандарта шифрования данных на ЭВМ. Был объявлен конкурс среди фирм-разработчиков, который выиграла фирма IBM, представившая в 1974 году алгоритм шифрования, известный под названием DES (Data Encryption Standart).

В этом алгоритме входные 64-битовые векторы, называемые блоками открытого текста, преобразуются в выходные 64-битовые векторы, называемые блоками шифротекста, с помощью двоичного 56-битового ключа К. Число различных ключей DES-алгоритма равно 2 56 .

Алгоритм реализуется в течение 16 аналогичных циклов шифрования, где на i-ом цикле используется цикловой ключ K i , представляющий собой алгоритмически вырабатываемую выборку 48 из 56 битов ключа K i , i = 1,2,…,16.

Алгоритм обеспечивает высокую стойкость, однако недавние результаты показали, что современная технология позволяет создать вычислительное устройство стоимостью около 1 млн. долларов США, способное вскрыть секретный ключ с помощью полного перебора в среднем за 3,5 часа.

Из-за небольшого размера ключа было принято решение использовать DES-алгоритм для закрытия коммерческой информации. Практическая реализация перебора всех ключей в данных условиях экономически не целесообразна, так как затраты на реализацию перебора не соответствуют ценности информации, закрываемой шифром.

DES-алгоритм явился первым примером широкого производства и внедрения технических средств в области защиты информации. Национальное бюро стандартов США проводит проверку аппаратных реализаций DES-алгоритма, предложенных фирмами-разработчиками, на специальном тестирующем стенде. Только после положительных результатов проверки производитель получает от Национального бюро стандартов сертификат на право реализации своего продукта. К настоящему времени аттестовано несколько десятков изделий, выполненных на различной элементной базе.

Достигнута высокая скорость шифрования. Она составляет в лучших изделиях 45 Мбит/с. Цена некоторых аппаратных изделий не превышает 100 долларов США.

Основные области применения DES-алгоритма:

хранение данных на компьютерах (шифрование файлов, паролей);

аутентификация сообщений (имея сообщение и контрольную группу, несложно убедиться в подлинности сообщения;

электронная система платежей (при операциях с широкой клиентурой и между банками);

Электронный обмен коммерческой информацией (обмен данными между покупателями, продавцом и банкиром защищен от изменений и перехвата.

Позднее появилась модификация DES - Triple DЕS («тройной DES» - так как трижды шифрует информацию «обычным» алгоритмом DES), свободная от основного недостатка прежнего варианта - короткого ключа; он здесь в два раза длиннее. Но, как оказалось, Triple DES унаследовал другие слабые стороны своего предшественника: отсутствие возможности для параллельных вычислений при шифровании и низкую скорость.

ГОСТ 28147-89

В 1989 году в СССР был разработан блочный шифр для использования в качестве государственного стандарта шифрования данных . Разработка была принята и зарегистрирована как ГОСТ 28147-89. Алгоритм был введен в действие в 1990 году. И хотя масштабы применения этого алгоритма шифрования до сих пор уточняются, начало его внедрения, в частности в банковской системе, уже положено. Алгоритм несколько медлителен, но обладает весьма высокой криптостойкостью.

В общих чертах ГОСТ 28147-89 аналогичен DES. Блок-схема алгоритма ГОСТ отличается от блок-схемыDES-алгоритма лишь отсутствием начальной перестановки и числом циклов шифрования (32 в ГОСТ против 16 в DES-алгоритме).

Ключ алгоритма ГОСТ - это массив, состоящий из 32-мерных векторов X 1 , X 2 ,…X 8 . Цикловой ключ i-го цикла K i равен Xs,где ряду значенийi от 1 до 32 соответствует следующий ряд значений s:

1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,8,7,6,5,4,3,2,1.

В шифре ГОСТ используется 256-битовый ключ и объем ключевого пространства составляет 2 256 . Ни на одной из существующих в настоящее время или предполагаемых к реализации в недалеком будущемкомпьютерных систем общего применения нельзя подобрать ключ за время, меньшее многих сотен лет. Российский стандарт проектировался с большим запасом, по стойкости он на много порядков превосходит американский стандарт DES с его реальным размером ключа в 56 бит и объемом ключевого пространства всего 2 56 , чего явно недостаточно. Ключ криптоалгоритма ГОСТ длиной 32 байта (256 бит) вчетверо больше ключа DES. Необходимое же на перебор всех ключей время при этом возрастает не в четыре раза, а в 256 32-8 = 256 24 , что выливается уже в астрономические цифры). В этой связи DES может представлять скорее исследовательский или научный, чем практический интерес.

Выводы об использовании современных алгоритмов шифрования

В настоящее время наиболее часто применяются три основных стандарта шифрования:

  • - DES;
  • - ГОСТ 28147-89 - отечественный метод, отличающийся высокой криптостойкостью;
  • - RSA - система, в которой шифрование и расшифровка осуществляется с помощью разных ключей.

Недостатком RSA является довольно низкая скорость шифрования, зато она обеспечивает персональную электронную подпись, основанную на уникальном для каждого пользователя секретном ключе. Характеристики наиболее популярных методов шифрования приведены в таблице 1.

Таблица 1 Характеристики наиболее распространенных методов шифрования

Сергей Панасенко ,
начальник отдела разработки программного обеспечения фирмы «Анкад»,
[email protected]

Основные понятия

Процесс преобразования открытых данных в зашифрованные и наоборот принято называть шифрованием, причем две составляющие этого процесса называют соответственно зашифрованием и расшифрованием. Математически данное преобразование представляется следующими зависимостями, описывающими действия с исходной информацией:

С = Ek1(M)

M" = Dk2(C),

где M (message) - открытая информация (в литературе по защите информации часто носит название "исходный текст");
C (cipher text) - полученный в результате зашифрования шифртекст (или криптограмма);
E (encryption) - функция зашифрования, выполняющая криптографические преобразования над исходным текстом;
k1 (key) - параметр функции E, называемый ключом зашифрования;
M" - информация, полученная в результате расшифрования;
D (decryption) - функция расшифрования, выполняющая обратные зашифрованию криптографические преобразования над шифртекстом;
k2 - ключ, с помощью которого выполняется расшифрование информации.

Понятие "ключ" в стандарте ГОСТ 28147-89 (алгоритм симметричного шифрования) определено следующим образом: "конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований". Иными словами, ключ представляет собой уникальный элемент, с помощью которого можно изменять результаты работы алгоритма шифрования: один и тот же исходный текст при использовании различных ключей будет зашифрован по-разному.

Для того, чтобы результат расшифрования совпал с исходным сообщением (т. е. чтобы M" = M), необходимо одновременное выполнение двух условий. Во-первых, функция расшифрования D должна соответствовать функции зашифрования E. Во-вторых, ключ расшифрования k2 должен соответствовать ключу зашифрования k1.

Если для зашифрования использовался криптостойкий алгоритм шифрования, то при отсутствии правильного ключа k2 получить M" = M невозможно. Криптостойкость - основная характеристика алгоритмов шифрования и указывает прежде всего на степень сложности получения исходного текста из зашифрованного без ключа k2.

Алгоритмы шифрования можно разделить на две категории: симметричного и асимметричного шифрования. Для первых соотношение ключей зашифрования и расшифрования определяется как k1 = k2 = k (т. е. функции E и D используют один и тот же ключ шифрования). При асимметричном шифровании ключ зашифрования k1 вычисляется по ключу k2 таким образом, что обратное преобразование невозможно, например, по формуле k1 = ak2 mod p (a и p - параметры используемого алгоритма).

Симметричное шифрование

Свою историю алгоритмы симметричного шифрования ведут с древности: именно этим способом сокрытия информации пользовался римский император Гай Юлий Цезарь в I веке до н. э., а изобретенный им алгоритм известен как "криптосистема Цезаря".

В настоящее время наиболее известен алгоритм симметричного шифрования DES (Data Encryption Standard), разработанный в 1977 г. До недавнего времени он был "стандартом США", поскольку правительство этой страны рекомендовало применять его для реализации различных систем шифрования данных. Несмотря на то, что изначально DES планировалось использовать не более 10-15 лет, попытки его замены начались только в 1997 г.

Мы не будем рассматривать DES подробно (почти во всех книгах из списка дополнительных материалов есть его подробнейшее описание), а обратимся к более современным алгоритмам шифрования. Стоит только отметить, что основная причина изменения стандарта шифрования - его относительно слабая криптостойкость, причина которой в том, что длина ключа DES составляет всего 56 значащих бит. Известно, что любой криптостойкий алгоритм можно взломать, перебрав все возможные варианты ключей шифрования (так называемый метод грубой силы - brute force attack). Легко подсчитать, что кластер из 1 млн процессоров, каждый из которых вычисляет 1 млн ключей в секунду, проверит 256 вариантов ключей DES почти за 20 ч. А поскольку по нынешним меркам такие вычислительные мощности вполне реальны, ясно, что 56-бит ключ слишком короток и алгоритм DES необходимо заменить на более "сильный".

Сегодня все шире используются два современных криптостойких алгоритма шифрования: отечественный стандарт ГОСТ 28147-89 и новый криптостандарт США - AES (Advanced Encryption Standard).

Стандарт ГОСТ 28147-89

Алгоритм, определяемый ГОСТ 28147-89 (рис. 1), имеет длину ключа шифрования 256 бит. Он шифрует информацию блоками по 64 бит (такие алгоритмы называются блочными), которые затем разбиваются на два субблока по 32 бит (N1 и N2). Субблок N1 обрабатывается определенным образом, после чего его значение складывается со значением субблока N2 (сложение выполняется по модулю 2, т. е. применяется логическая операция XOR - "исключающее или"), а затем субблоки меняются местами. Данное преобразование выполняется определенное число раз ("раундов"): 16 или 32 в зависимости от режима работы алгоритма. В каждом раунде выполняются две операции.

Первая - наложение ключа. Содержимое субблока N1 складывается по модулю 2 с 32-бит частью ключа Kx. Полный ключ шифрования представляется в виде конкатенации 32-бит подключей: K0, K1, K2, K3, K4, K5, K6, K7. В процессе шифрования используется один из этих подключей - в зависимости от номера раунда и режима работы алгоритма.

Вторая операция - табличная замена. После наложения ключа субблок N1 разбивается на 8 частей по 4 бит, значение каждой из которых заменяется в соответствии с таблицей замены для данной части субблока. Затем выполняется побитовый циклический сдвиг субблока влево на 11 бит.

Табличные замены (Substitution box - S-box) часто используются в современных алгоритмах шифрования, поэтому стоит пояснить, как организуется подобная операция. В таблицу записываются выходные значения блоков. Блок данных определенной размерности (в нашем случае - 4-бит) имеет свое числовое представление, которое определяет номер выходного значения. Например, если S-box имеет вид 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 и на вход пришел 4-бит блок "0100" (значение 4), то, согласно таблице, выходное значение будет равно 15, т. е. "1111" (0 а 4, 1 а 11, 2 а 2 ...).

Алгоритм, определяемый ГОСТ 28147-89, предусматривает четыре режима работы: простой замены, гаммирования, гаммирования с обратной связью и генерации имитоприставок. В них используется одно и то же описанное выше шифрующее преобразование, но, поскольку назначение режимов различно, осуществляется это преобразование в каждом из них по-разному.

В режиме простой замены для зашифрования каждого 64-бит блока информации выполняются 32 описанных выше раунда. При этом 32-бит подключи используются в следующей последовательности:

K0, K1, K2, K3, K4, K5, K6, K7, K0, K1 и т. д. - в раундах с 1-го по 24-й;

K7, K6, K5, K4, K3, K2, K1, K0 - в раундах с 25-го по 32-й.

Расшифрование в данном режиме проводится точно так же, но с несколько другой последовательностью применения подключей:

K0, K1, K2, K3, K4, K5, K6, K7 - в раундах с 1-го по 8-й;

K7, K6, K5, K4, K3, K2, K1, K0, K7, K6 и т. д. - в раундах с 9-го по 32-й.

Все блоки шифруются независимо друг от друга, т. е. результат зашифрования каждого блока зависит только от его содержимого (соответствующего блока исходного текста). При наличии нескольких одинаковых блоков исходного (открытого) текста соответствующие им блоки шифртекста тоже будут одинаковы, что дает дополнительную полезную информацию для пытающегося вскрыть шифр криптоаналитика. Поэтому данный режим применяется в основном для шифрования самих ключей шифрования (очень часто реализуются многоключевые схемы, в которых по ряду соображений ключи шифруются друг на друге). Для шифрования собственно информации предназначены два других режима работы - гаммирования и гаммирования с обратной связью.

В режиме гаммирования каждый блок открытого текста побитно складывается по модулю 2 с блоком гаммы шифра размером 64 бит. Гамма шифра - это специальная последовательность, которая получается в результате определенных операций с регистрами N1 и N2 (см. рис. 1).

1. В регистры N1 и N2 записывается их начальное заполнение - 64-бит величина, называемая синхропосылкой.

2. Выполняется зашифрование содержимого регистров N1 и N2 (в данном случае - синхропосылки) в режиме простой замены.

3. Содержимое регистра N1 складывается по модулю (232 - 1) с константой C1 = 224 + 216 + 28 + 24, а результат сложения записывается в регистр N1.

4. Содержимое регистра N2 складывается по модулю 232 с константой C2 = 224 + 216 + 28 + 1, а результат сложения записывается в регистр N2.

5. Содержимое регистров N1 и N2 подается на выход в качестве 64-бит блока гаммы шифра (в данном случае N1 и N2 образуют первый блок гаммы).

Если необходим следующий блок гаммы (т. е. необходимо продолжить зашифрование или расшифрование), выполняется возврат к операции 2.

Для расшифрования гамма вырабатывается аналогичным образом, а затем к битам зашифрованного текста и гаммы снова применяется операция XOR. Поскольку эта операция обратима, в случае правильно выработанной гаммы получается исходный текст (таблица).

Зашифрование и расшифрование в режиме гаммирования

Для выработки нужной для расшифровки гаммы шифра у пользователя, расшифровывающего криптограмму, должен быть тот же ключ и то же значение синхропосылки, которые применялись при зашифровании информации. В противном случае получить исходный текст из зашифрованного не удастся.

В большинстве реализаций алгоритма ГОСТ 28147-89 синхропосылка не секретна, однако есть системы, где синхропосылка - такой же секретный элемент, как и ключ шифрования. Для таких систем эффективная длина ключа алгоритма (256 бит) увеличивается еще на 64 бит секретной синхропосылки, которую также можно рассматривать как ключевой элемент.

В режиме гаммирования с обратной связью для заполнения регистров N1 и N2, начиная со 2-го блока, используется не предыдущий блок гаммы, а результат зашифрования предыдущего блока открытого текста (рис. 2). Первый же блок в данном режиме генерируется полностью аналогично предыдущему.

Рис. 2. Выработка гаммы шифра в режиме гаммирования с обратной связью.

Рассматривая режим генерации имитоприставок , следует определить понятие предмета генерации. Имитоприставка - это криптографическая контрольная сумма, вычисляемая с использованием ключа шифрования и предназначенная для проверки целостности сообщений. При генерации имитоприставки выполняются следующие операции: первый 64-бит блок массива информации, для которого вычисляется имитоприставка, записывается в регистры N1 и N2 и зашифровывается в сокращенном режиме простой замены (выполняются первые 16 раундов из 32). Полученный результат суммируется по модулю 2 со следующим блоком информации с сохранением результата в N1 и N2.

Цикл повторяется до последнего блока информации. Получившееся в результате этих преобразований 64-бит содержимое регистров N1 и N2 или его часть и называется имитоприставкой. Размер имитоприставки выбирается, исходя из требуемой достоверности сообщений: при длине имитоприставки r бит вероятность, что изменение сообщения останется незамеченным, равна 2-r.Чаще всего используется 32-бит имитоприставка, т. е. половина содержимого регистров. Этого достаточно, поскольку, как любая контрольная сумма, имитоприставка предназначена прежде всего для защиты от случайных искажений информации. Для защиты же от преднамеренной модификации данных применяются другие криптографические методы - в первую очередь электронная цифровая подпись.

При обмене информацией имитоприставка служит своего рода дополнительным средством контроля. Она вычисляется для открытого текста при зашифровании какой-либо информации и посылается вместе с шифртекстом. После расшифрования вычисляется новое значение имитоприставки, которое сравнивается с присланной. Если значения не совпадают - значит, шифртекст был искажен при передаче или при расшифровании использовались неверные ключи. Особенно полезна имитоприставка для проверки правильности расшифрования ключевой информации при использовании многоключевых схем.

Алгоритм ГОСТ 28147-89 считается очень сильным алгоритмом - в настоящее время для его раскрытия не предложено более эффективных методов, чем упомянутый выше метод "грубой силы". Его высокая стойкость достигается в первую очередь за счет большой длины ключа - 256 бит. При использовании секретной синхропосылки эффективная длина ключа увеличивается до 320 бит, а засекречивание таблицы замен прибавляет дополнительные биты. Кроме того, криптостойкость зависит от количества раундов преобразований, которых по ГОСТ 28147-89 должно быть 32 (полный эффект рассеивания входных данных достигается уже после 8 раундов).

Стандарт AES

В отличие от алгоритма ГОСТ 28147-89, который долгое время оставался секретным, американский стандарт шифрования AES, призванный заменить DES, выбирался на открытом конкурсе, где все заинтересованные организации и частные лица могли изучать и комментировать алгоритмы-претенденты.

Конкурс на замену DES был объявлен в 1997 г. Национальным институтом стандартов и технологий США (NIST - National Institute of Standards and Technology). На конкурс было представлено 15 алгоритмов-претендентов, разработанных как известными в области криптографии организациями (RSA Security, Counterpane и т. д.), так и частными лицами. Итоги конкурса были подведены в октябре 2000 г.: победителем был объявлен алгоритм Rijndael, разработанный двумя криптографами из Бельгии, Винсентом Риджменом (Vincent Rijmen) и Джоан Даймен (Joan Daemen).

Алгоритм Rijndael не похож на большинство известных алгоритмов симметричного шифрования, структура которых носит название "сеть Фейстеля" и аналогична российскому ГОСТ 28147-89. Особенность сети Фейстеля состоит в том, что входное значение разбивается на два и более субблоков, часть из которых в каждом раунде обрабатывается по определенному закону, после чего накладывается на необрабатываемые субблоки (см. рис. 1).

В отличие от отечественного стандарта шифрования, алгоритм Rijndael представляет блок данных в виде двухмерного байтового массива размером 4X4, 4X6 или 4X8 (допускается использование нескольких фиксированных размеров шифруемого блока информации). Все операции выполняются с отдельными байтами массива, а также с независимыми столбцами и строками.

Алгоритм Rijndael выполняет четыре преобразования: BS (ByteSub) - табличная замена каждого байта массива (рис. 3); SR (ShiftRow) - сдвиг строк массива (рис. 4). При этой операции первая строка остается без изменений, а остальные циклически побайтно сдвигаются влево на фиксированное число байт, зависящее от размера массива. Например, для массива размером 4X4 строки 2, 3 и 4 сдвигаются соответственно на 1, 2 и 3 байта. Далее идет MC (MixColumn) - операция над независимыми столбцами массива (рис. 5), когда каждый столбец по определенному правилу умножается на фиксированную матрицу c(x). И, наконец, AK (AddRoundKey) - добавление ключа. Каждый бит массива складывается по модулю 2 с соответствующим битом ключа раунда, который, в свою очередь, определенным образом вычисляется из ключа шифрования (рис. 6).


Рис. 3. Операция BS.

Рис. 4. Операция SR.

Рис. 5. Операция MC.

Количество раундов шифрования (R) в алгоритме Rijndael переменное (10, 12 или 14 раундов) и зависит от размеров блока и ключа шифрования (для ключа также предусмотрено несколько фиксированных размеров).

Расшифрование выполняется с помощью следующих обратных операций. Выполняется обращение таблицы и табличная замена на инверсной таблице (относительно применяемой при зашифровании). Обратная операция к SR - это циклический сдвиг строк вправо, а не влево. Обратная операция для MC - умножение по тем же правилам на другую матрицу d(x), удовлетворяющую условию: c(x) * d(x) = 1. Добавление ключа AK является обратным самому себе, поскольку в нем используется только операция XOR. Эти обратные операции применяются при расшифровании в последовательности, обратной той, что использовалась при зашифровании.

Rijndael стал новым стандартом шифрования данных благодаря целому ряду преимуществ перед другими алгоритмами. Прежде всего он обеспечивает высокую скорость шифрования на всех платформах: как при программной, так и при аппаратной реализации. Его отличают несравнимо лучшие возможности распараллеливания вычислений по сравнению с другими алгоритмами, представленными на конкурс. Кроме того, требования к ресурсам для его работы минимальны, что важно при его использовании в устройствах, обладающих ограниченными вычислительными возможностями.

Недостатком же алгоритма можно считать лишь свойственную ему нетрадиционную схему. Дело в том, что свойства алгоритмов, основанных на сети Фейстеля, хорошо исследованы, а Rijndael, в отличие от них, может содержать скрытые уязвимости, которые могут обнаружиться только по прошествии какого-то времени с момента начала его широкого распространения.

Асимметричное шифрование

Алгоритмы асимметричного шифрования, как уже отмечалось, используют два ключа: k1 - ключ зашифрования, или открытый, и k2 - ключ расшифрования, или секретный. Открытый ключ вычисляется из секретного: k1 = f(k2).

Асимметричные алгоритмы шифрования основаны на применении однонаправленных функций. Согласно определению, функция y = f(x) является однонаправленной, если: ее легко вычислить для всех возможных вариантов x и для большинства возможных значений y достаточно сложно вычислить такое значение x, при котором y = f(x).

Примером однонаправленной функции может служить умножение двух больших чисел: N = P*Q. Само по себе такое умножение - простая операция. Однако обратная функция (разложение N на два больших множителя), называемая факторизацией, по современным временным оценкам представляет собой достаточно сложную математическую задачу. Например, разложение на множители N размерностью 664 бит при P ? Q потребует выполнения примерно 1023 операций, а для обратного вычисления х для модульной экспоненты y = ax mod p при известных a, p и y (при такой же размерности a и p) нужно выполнить примерно 1026 операций. Последний из приведенных примеров носит название - "Проблема дискретного логарифма" (DLP - Discrete Logarithm Problem), и такого рода функции часто используются в алгоритмах асимметричного шифрования, а также в алгоритмах, используемых для создания электронной цифровой подписи.

Еще один важный класс функций, используемых в асимметричном шифровании, - однонаправленные функции с потайным ходом. Их определение гласит, что функция является однонаправленной с потайным ходом, если она является однонаправленной и существует возможность эффективного вычисления обратной функции x = f-1(y), т. е. если известен "потайной ход" (некое секретное число, в применении к алгоритмам асимметричного шифрования - значение секретного ключа).

Однонаправленные функции с потайным ходом используются в широко распространенном алгоритме асимметричного шифрования RSA.

Алгоритм RSA

Разработанный в 1978 г. тремя авторами (Rivest, Shamir, Adleman), он получил свое название по первым буквам фамилий разработчиков. Надежность алгоритма основывается на сложности факторизации больших чисел и вычисления дискретных логарифмов. Основной параметр алгоритма RSA - модуль системы N, по которому проводятся все вычисления в системе, а N = P*Q (P и Q - секретные случайные простые большие числа, обычно одинаковой размерности).

Секретный ключ k2 выбирается случайным образом и должен соответствовать следующим условиям:

1

где НОД - наибольший общий делитель, т. е. k1 должен быть взаимно простым со значением функции Эйлера F(N), причем последнее равно количеству положительных целых чисел в диапазоне от 1 до N, взаимно простых с N, и вычисляется как F(N) = (P - 1)*(Q - 1) .

Открытый ключ k1 вычисляется из соотношения (k2*k1) = 1 mod F(N) , и для этого используется обобщенный алгоритм Евклида (алгоритм вычисления наибольшего общего делителя). Зашифрование блока данных M по алгоритму RSA выполняется следующим образом: C = M[в степени k1] mod N . Заметим, что, поскольку в реальной криптосистеме с использованием RSA число k1 весьма велико (в настоящее время его размерность может доходить до 2048 бит), прямое вычисление M[в степени k1] нереально. Для его получения применяется комбинация многократного возведения M в квадрат с перемножением результатов.

Обращение данной функции при больших размерностях неосуществимо; иными словами, невозможно найти M по известным C, N и k1. Однако, имея секретный ключ k2, при помощи несложных преобразований можно вычислить M = Ck2 mod N. Очевидно, что, помимо собственно секретного ключа, необходимо обеспечивать секретность параметров P и Q. Если злоумышленник добудет их значения, то сможет вычислить и секретный ключ k2.

Какое шифрование лучше?

Основной недостаток симметричного шифрования - необходимость передачи ключей "из рук в руки". Недостаток этот весьма серьезен, поскольку делает невозможным использование симметричного шифрования в системах с неограниченным числом участников. Однако в остальном симметричное шифрование имеет одни достоинства, которые хорошо видны на фоне серьезных недостатков шифрования асимметричного.

Первый из них - низкая скорость выполнения операций зашифрования и расшифрования, обусловленная наличием ресурсоемких операций. Другой недостаток "теоретический" - математически криптостойкость алгоритмов асимметричного шифрования не доказана. Это связано прежде всего с задачей дискретного логарифма - пока не удалось доказать, что ее решение за приемлемое время невозможно. Излишние трудности создает и необходимость защиты открытых ключей от подмены - подменив открытый ключ легального пользователя, злоумышленник сможет обеспечить зашифрование важного сообщения на своем открытом ключе и впоследствии легко расшифровать его своим секретным ключом.

Тем не менее эти недостатки не препятствуют широкому применению алгоритмов асимметричного шифрования. Сегодня существуют криптосистемы, поддерживающие сертификацию открытых ключей, а также сочетающие алгоритмы симметричного и асимметричного шифрования. Но это уже тема для отдельной статьи.

Дополнительные источники информации

Тем читателям, которые непраздно интересуются шифрованием, автор рекомендует расширить свой кругозор с помощью следующих книг.

  1. Брассар Ж. "Современная криптология".
  2. Петров А. А. "Компьютерная безопасность: криптографические методы защиты".
  3. Романец Ю. В., Тимофеев П. А., Шаньгин В. Ф. "Защита информации в современных компьютерных системах".
  4. Соколов А. В., Шаньгин В. Ф. "Защита информации в распределенных корпоративных сетях и системах".

Полное описание алгоритмов шифрования можно найти в следующих документах:

  1. ГОСТ 28147-89. Система обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. - М.: Госстандарт СССР, 1989.
  2. Алгоритм AES: http://www.nist.gov/ae .
  3. Алгоритм RSA: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1 .

09.07.2003

Что такое шифрование?

Шифрование используется человечеством с того самого момента, как появилась первая секретная информация, т. е. такая, доступ к которой должен быть ограничен. Это было очень давно - так, один из самых известных методов шифрования носит имя Цезаря, который если и не сам его изобрел, то активно им пользовался (см. врезку ).

Криптография обеспечивает сокрытие смысла сообщения и раскрытие его расшифровкой с помощью специальных алгоритмов и ключей. Ключ понимается нами как конкретное секретное состояние параметров алгоритмов шифрования и дешифрования. Знание ключа дает возможность прочтения секретного сообщения. Впрочем, как вы увидите ниже, далеко не всегда незнание ключа гарантирует то, что сообщение не сможет прочесть посторонний человек.

Процесс вскрытия шифра без знания ключа называется криптоанализом. Время, необходимое для взлома шифра, определяется его криптостойкостью. Чем оно больше, тем «сильнее» алгоритм шифрования. Еще лучше, если изначально вообще нельзя выяснить, достижим ли результат взлома.

Основные современные методы шифрования

Среди разнообразнейших способов шифровании можно выделить следующие основные методы:

  • Алгоритмы замены или подстановки - символы исходного текста заменяются на символы другого (или того же) алфавита в соответствии с заранее определенной схемой, которая и будет ключом данного шифра. Отдельно этот метод в современных криптосистемах практически не используется из-за чрезвычайно низкой криптостойкости.
  • Алгоритмы перестановки - символы оригинального текста меняются местами по определенному принципу, являющемуся секретным ключом. Алгоритм перестановки сам по себе обладает низкой криптостойкостью, но входит в качестве элемента в очень многие современные криптосистемы.
  • Алгоритмы гаммирования - символы исходного текста складываются с символами некой случайной последовательности. Самым распространенным примером считается шифрование файлов "имя пользователя.pwl", в которых операционная система Microsoft Windows 95 хранит пароли к сетевым ресурсам данного пользователя (пароли на вход в NT-серверы, пароли для DialUp-доступа в Интернет и т.д.).

Когда пользователь вводит свой пароль при входе в Windows 95, из него по алгоритму шифрования RC4 генерируется гамма (всегда одна и та же), применяемая для шифрования сетевых паролей. Простота подбора пароля обусловливается в данном случае тем, что Windows всегда предпочитает одну и ту же гамму.

  • Алгоритмы, основанные на сложных математических преобразованиях исходного текста по некоторой формуле. Многие из них используют нерешенные математические задачи. Например, широко используемый в Интернете алгоритм шифрования RSA основан на свойствах простых чисел.

Симметричные и асимметричные криптосистемы

Прежде чем перейти к отдельным алгоритмам, рассмотрим вкратце концепцию симметричных и асимметричных криптосистем. Сгенерировать секретный ключ и зашифровать им сообщение - это еще полдела. А вот как переслать такой ключ тому, кто должен с его помощью расшифровать исходное сообщение? Передача шифрующего ключа считается одной из основных проблем криптографии.

Оставаясь в рамках симметричной системы (так она названа оттого, что для шифрования и дешифрования подходит один и тот же ключ), необходимо иметь надежный канал связи для передачи секретного ключа. Но такой канал не всегда бывает доступен, и потому американские математики Диффи, Хеллман и Меркле разработали в 1976 г. концепцию открытого ключа и асимметричного шифрования. В таких криптосистемах общедоступным является только ключ для процесса шифрования, а процедура дешифрования известна лишь обладателю секретного ключа.

Например, когда я хочу, чтобы мне выслали сообщение, то генерирую открытый и секретный ключи. Открытый посылаю вам, вы шифруете им сообщение и отправляете мне. Дешифровать сообщение могу только я, так как секретный ключ я никому не передавал. Конечно, оба ключа связаны особым образом (в каждой криптосистеме по-разному), и распространение открытого ключа не разрушает криптостойкость системы.

В асимметричных системах должно удовлетворяться следующее требование: нет такого алгоритма (или он пока неизвестен), который бы из криптотекста и открытого ключа выводил исходный текст. Пример такой системы - широко известная криптосистема RSA.

Алгоритм RSA

Алгоритм RSA (по первым буквам фамилий его создателей Rivest-Shamir-Adleman) основан на свойствах простых чисел (причем очень больших). Простыми называются такие числа, которые не имеют делителей, кроме самих себя и единицы. А взаимно простыми называются числа, не имеющие общих делителей, кроме 1.

Для начала выберем два очень больших простых числа (большие исходные числа нужны для построения больших криптостойких ключей. Например, Unix-программа ssh-keygen по умолчанию генерирует ключи длиной 1024 бита).

Определим параметр n как результат перемножения p и q . Выберем большое случайное число и назовем его d , причем оно должно быть взаимно простым с результатом умножения (p -1)*(q -1) .

Отыщем такое число e, для которого верно соотношение

(e*d) mod ((p -1)*(q -1)) = 1

(mod - остаток от деления, т. е. если e, умноженное на d, поделить на ((p -1)*(q -1)) , то в остатке получим 1).

Открытым ключом является пара чисел e и n , а закрытым - d и n .

При шифровании исходный текст рассматривается как числовой ряд, и над каждым его числом мы совершаем операцию

C(i)= (M(i) e) mod n.

В результате получается последовательность C(i) , которая и составит криптотекст. Декодирование информации происходит по формуле

M(i) = (C(i) d) mod n.

Как видите, расшифровка предполагает знание секретного ключа.

Давайте попробуем на маленьких числах.

Установим p=3, q=7 . Тогда n=p*q=21. Выбираем d как 5. Из формулы (e*5) mod 12=1 вычисляем e=17 . Открытый ключ 17, 21 , секретный - 5, 21 .

Зашифруем последовательность «12345»:

C(1)= 1 17 mod 21= 1

C(2)= 2 17 mod 21 =11

C(3)= 3 17 mod 21= 12

C(4)= 4 17 mod 21= 16

C(5)= 5 17 mod 21= 17

Криптотекст - 1 11 12 16 17.

Проверим расшифровкой:

M(1)= 1 5 mod 21= 1

M(2)= 11 5 mod 21= 2

M(3)= 12 5 mod 21= 3

M(4)= 16 5 mod 21= 4

M(5)= 17 5 mod 21= 5

Как видим, результат совпал.

Криптосистема RSA широко применяется в Интернете. Когда вы подсоединяетесь к защищенному серверу по протоколу SSL, устанавливаете на свой ПК сертификат WebMoney либо подключаетесь к удаленному серверу с помощью Open SSH или SecureShell, то все эти программы применяют шифрование открытым ключом с использованием идей алгоритма RSA. Действительно ли эта система так надежна?

Конкурсы по взлому RSA

С момента своего создания RSA постоянно подвергалась атакам типа Brute-force attack (атака методом грубой силы, т. е. перебором). В 1978 г. авторы алгоритма опубликовали статью, где привели строку, зашифрованную только что изобретенным ими методом. Первому, кто расшифрует сообщение, было назначено вознаграждение в размере 100 долл., но для этого требовалось разложить на два сомножителя 129-значное число. Это был первый конкурс на взлом RSA. Задачу решили только через 17 лет после публикации статьи.

Криптостойкость RSA основывается на том предположении, что исключительно трудно, если вообще реально, определить закрытый ключ из открытого. Для этого требовалось решить задачу о существовании делителей огромного целого числа. До сих пор ее аналитическими методами никто не решил, и алгоритм RSA можно взломать лишь путем полного перебора. Строго говоря, утверждение, что задача разложения на множители сложна и что взлом системы RSA труден, также не доказано.

Полученное в результате обработки хэш-функцией текста сообщения число шифруется по RSA-алгоритму на закрытом ключе пользователя и посылается адресату вместе с письмом и экземпляром открытого ключа. Адресат с помощью открытого ключа отправителя выполняет ту же хэш-функцию над пришедшим сообщением. Если оба числа равны, это означает, что сообщение подлинное, а если был изменен хотя бы один символ, то числа не совпадут.

Один из самых распространенных в России почтовых клиентов, программа The Bat!, обладает встроенными возможностями добавлять цифровые подписи к письмам (обратите внимание на пункт меню Privacy при редактировании письма). Подробнее об этой методике читайте в статье (см. «Мир ПК», № 3/02).

Рис. 3

Криптография

Криптография - наука о принципах, средствах и методах преобразования информации для защиты ее от несанкционированного доступа и искажения. В последнее время она развивается очень и очень бурно. Это бесконечная увлекательная гонка, требующая много времени и сил: криптоаналитики взламывают алгоритмы, которые еще недавно были стандартами и повсеместно использовались. Кстати, недавно математики Дэн Голдстон (США) и Кем Илдирим (Турция) доказали первую закономерность в распределении простых чисел (до сих пор таких закономерностей не замечали). Простые числа располагаются на числовой оси некоторыми скоплениями, что несколько облегчает их поиск.

Математические исследования, ведущиеся во всем мире, постоянно приводят все к новым и новым открытиям. Как знать, может быть, мы стоим на пороге взлома алгоритма RSA или других криптосистем, основанных на нерешенных математических задачах.

Олег Бунин - специалист по разработке ПО для крупных Интернет-проектов, сотрудник компании «Рамблер», [email protected] .

Литература
  1. Лукашов И. В. Криптография? Железно! // Мир ПК. 2003. № 3 (
  2. Носов В. А. Краткий исторический очерк развития криптографии // Материалы конференции "Московский университет и развитие криптографии в России", МГУ, 17-18 октября 2002 г.
  3. Саломаа А. Криптография с открытым ключом. М., 1996 .
  4. Циммерман Ф. PGP - кодирование с открытым ключом для всех.

Система шифрования Цезаря

Пример алгоритма замены - система шифрования Цезаря. Этот метод основан на замене каждой буквы сообщения на другую путем смещения от исходной на фиксированное количество символов. Попробуйте расшифровать четверостишие Омара Хайяма (время выполнения - 10 минут).

РЛЗЬ ЁМЭЙЗ АВБЖУ ИЙЗАВЛУ, БЖЩЛУ ЖЩЭЗЬЖЗ ЖЮЁЩЕЗ, ЭЫЩ ЫЩАЖФО ИЙЩЫВЕЩ БЩИЗЁЖВ ЭЕШ ЖЩРЩЕЩ: ЛФ ЕМРСЮ ЪЗЕЗЭЩГ, РЮЁ РЛЗ ИЗИЩЕЗ ЮКЛУ, В ЕМРСЮ ЬМЭУ ЗЭВЖ, РЮЁ ЫЁЮКЛЮ К ДЮЁ ИЗИЩЕЗ.

Успели? Привожу «отгадку»:

Чтоб мудро жизнь прожить, знать надобно немало,

Два важных правила запомни для начала:

Ты лучше голодай, чем что попало есть,

И лучше будь один, чем вместе с кем попало.

Ключ для расшифровки: сдвигаем на семь символов (берем седьмой) влево по алфавиту. Алфавит закольцован. Регистр символов не учитывается.

Windows и пароли

Как Windows шифрует пароли?

Система берет пароль, преобразует его в верхний регистр, обрезает до 14 символов, затем делит их на две половины по 7, шифрует каждую по отдельности и так сохраняет, что несколько упрощает взлом. Кстати, когда будете придумывать пароль, имейте в виду, что комбинация длиннее 14 символов имеет мало смысла.

Конкурс AES (Advanced Encryption Standard)

В 80-х гг. в США приняли стандарт симметричного шифрования для внутреннего применения - DES ((Data Encryption Standard, подобный стандарт есть и в России). Но в 1997 г., когда стало понятно, что 56-битового ключа DES недостаточно для надежной криптосистемы, Американский институт стандартизации объявил конкурс на новый стандартный алгоритм. Из 15 вариантов был выбран лучший: бельгийский алгоритм Rijndael (его название составлено из фамилий авторов - Rijmen и Daemen, читается как «Рэйндал». Этот алгоритм уже встроен в различные криптографические средства, поставляемые на рынок). Другими финалистами конкурса стали MARS, RC6, Serpent, TwoFish. Все эти алгоритмы были признаны достаточно стойкими и успешно противостоящими всем широко известным методам криптоанализа.

Криптографические хэш-функции

Криптографические хэш-функции преобразуют входные данные любого размера в строку фиксированного размера. Для них чрезвычайно сложно найти:

  • два разных набора данных с одинаковым результатом преобразования (стойкость к коллизиям); например, количество арифметических операций, необходимых для того, чтобы найти блок данных, также имеющий краткое сообщение для хэш-функции MD5, составляет приблизительно 2 64;
  • входное значение по известному результату хэширования (необратимость); для MD5 предполагаемое количество операций, необходимых для вычисления исходного сообщения, равно 2 128.

Занимательное шифрование

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Курсовая работа

На тему:

Алгоритмы шифрования данных

Введение

1. Назначение и структура алгоритмов шифрования

1.1 Обзор криптографических методов

2. Алгоритм симметричного шифрования

2.1 Структура алгоритмов шифрования

3. Применение симметричного алгоритма шифрования

Заключение

Список литературы

Введение

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен.

Почему проблема использования криптографических методов в информационных системах стала в настоящий момент особо актуальна?

До сих пор любая известная форма коммерции потенциально подвержена мошенничеству - от обвешивания на рынке до фальшивых счетов и подделки денежных знаков. Схемы электронной коммерции не исключение. Такие формы нападения может предотвратить только стойкая криптография.

Электронные деньги без криптографии не выживут. Интернет постепенно превращается в Информационную Магистраль. Это связано с тем, что количество пользователей Сети постоянно растет, как снежная лавина. Кроме обычного обмена информации в Сеть проникают деловые отношения, которые всегда влекут за собой денежные расчеты. Примеров торговли в Интернете различными товарами и услугами накопилось немало. Это и традиционная торговля, подкрепленная возможностями Сети, когда покупатель может выбрать товар из огромных каталогов и даже рассмотреть этот товар (такой сервис, основанный на передаче трехмерного изображения, становится все более распространенным). Это доступ к туристическим услугам, когда вы можете заранее узнать все о месте вашего путешествия и уровне сервиса, рассмотреть фотографии (природа, рестораны, бассейны, обстановка номера...), забронировать путевку и заказать авиабилеты. Таких примеров довольно много, и многие из них подразумевают денежные расчеты.

Что касается расчетов с помощью кредитной карты, то ее недостатки очевидны: необходимо обзаводится картой (а в России еще далеко не все знают, что это такое), есть и опасения, что всем в Интернете станут известны коды вашей кредитки злые люди очистят ваш счет. На самом деле вероятность такого мошенничества не больше той, что при обмене валюты вам подсунут фальшивые деньги. Да и вообще, к электронных денег проблем не больше, чем у обыкновенных. Для проведения расчетов в Сети разработано несколько платежных систем. Которые либо искусно применяют существующие кредитки, либо опираются на чистые электронные деньги, то есть на защищенную систему файлов, в которых хранятся записи о состоянии вашего счета. Таких систем в мире больше десятка, а в России тоже несколько, самая распространенная из которых - CyberPlat.

1. Расчеты в Сети связаны с передачей особой информации, которую нельзя открывать посторонним лицам.

2. При расчетах необходимо иметь гарантию, что все действующие лица (покупатель, продавец, банк или платежная система) именно те, за кого себя выдают.

Этих двух факторов достаточно, чтобы понять, что без криптографии расчеты в Сети невозможны, а сама идея электронных денег предполагает надежную защиту информации и гарантию того, что никто не сможет подменить участника сделки и таким образом украсть электронные деньги.

Появление новых мощных компьютеров, технологий сетевых и нейтронных вычислений, сделало возможным дискредитацию криптографических систем, еще недавно считавшимися нераскрываемыми.

Все это постоянно подталкивает исследователей на создание новых криптосистем и тщательный анализ уже существующих.

Актуальность и важность проблемы обеспечения информационной безопасности обусловлена следующими факторами:

* Современные уровни и темпы развития средств информационной безопасности значительно отстают от уровней и темпов развития информационных технологий.

* Высокие темпы роста парка персональных компьютеров, применяемых в разнообразных сферах человеческой деятельности.

1. Назначение и структура алгоритмов шифрования

Шифрование является наиболее широко используемым криптографическим методом сохранения конфиденциальности информации, он защищает данные от несанкционированного ознакомления с ними. Для начала рассмотрим основные методы криптографической защиты информации. Словом, криптография - наука о защите информации с использованием математических методов. Существует и наука, противоположная криптографии и посвященная методам вскрытия защищенной информации - криптоанализ . Совокупность криптографии и криптоанализа принято называть криптологией . Криптографические методы могут быть классифицированы различным образом, но наиболее часто они подразделяются в зависимости от количества ключей, используемых в соответствующих криптоалгоритмах (см. рис. 1):

1. Бесключевые, в которых не используются какие-либо ключи.

2. Одноключевые - в них используется некий дополнительный ключевой параметр - обычно это секретный ключ.

3. Двухключевые, использующие в своих вычислениях два ключа: секретный и открытый.

Рис. 1. Криптоалгоритмы

1.1 Обзор криптографических методов

Шифрование является основным методом защиты; рассмотрим его подробно далее.

Стоит сказать несколько слов и об остальных криптографических методах:

1. Электронная подпись используется для подтверждения целостности и авторства данных. Целостность данных означает, что данные не были случайно или преднамеренно изменены при их хранении или передаче.

Алгоритмы электронной подписи используют два вида ключей:

o секретный ключ используется для вычисления электронной подписи;

o открытый ключ используется для ее проверки.

При использовании криптографически сильного алгоритма электронной подписи и при грамотном хранении и использовании секретного ключа (то есть при невозможности использования ключа никем, кроме его владельца) никто другой не в состоянии вычислить верную электронную подпись какого-либо электронного документа.

2. Аутентификация позволяет проверить, что пользователь (или удаленный компьютер) действительно является тем, за кого он себя выдает. Простейшей схемой аутентификации является парольная - в качестве секретного элемента в ней используется пароль, который предъявляется пользователем при его проверке. Такая схема доказано является слабой, если для ее усиления не применяются специальные административно-технические меры. А на основе шифрования или хэширования (см. ниже) можно построить действительно сильные схемы аутентификации пользователей.

3. Существуют различные методы криптографического контрольного суммирования:

o ключевое и бесключевое хэширование;

o вычисление имитоприставок;

o использование кодов аутентификации сообщений.

Фактически, все эти методы различным образом из данных произвольного размера с использованием секретного ключа или без него вычисляют некую контрольную сумму фиксированного размера, однозначно соответствующую исходным данным.

Такое криптографическое контрольное суммирование широко используется в различных методах защиты информации, например:

o для подтверждения целостности любых данных в тех случаях, когда использование электронной подписи невозможно (например, из-за большой ресурсоемкости) или является избыточным;

o в самих схемах электронной подписи - "подписывается" обычно хэш данных, а не все данные целиком;

o в различных схемах аутентификации пользователей.

4. Генераторы случайных и псевдослучайных чисел позволяют создавать последовательности случайных чисел, которые широко используются в криптографии, в частности:

o случайные числа необходимы для генерации секретных ключей, которые, в идеале, должны быть абсолютно случайными;

o случайные числа применяются во многих алгоритмах электронной подписи;

o случайные числа используются во многих схемах аутентификации.

Не всегда возможно получение абсолютно случайных чисел - для этого необходимо наличие качественных аппаратных генераторов. Однако, на основе алгоритмов симметричного шифрования можно построить качественные генераторы псевдослучайных чисел.

2 Алгоритм симметричного шифрования

Шифрование информации - это преобразование открытой информации в зашифрованную (которая чаще всего называется шифртекстом или криптограммой ), и наоборот. Первая часть этого процесса называется зашифрованием , вторая - расшифрованием .

Можно представить зашифрование в виде следующей формулы:

С = E k1 (M), где:

M (message) - открытая информация,

С (cipher text) - полученный в результате зашифрования шифртекст,

E (encryption) - функция зашифрования, выполняющая криптографические преобразования над M ,

k1 (key) - параметр функции E , называемый ключом зашифрования.

В стандарте ГОСТ 28147-89 (стандарт определяет отечественный алгоритм симметричного шифрования) понятие ключ определено следующим образом: "Конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований".

Ключ может принадлежать определенному пользователю или группе пользователей и являться для них уникальным. Зашифрованная с использованием конкретного ключа информация может быть расшифрована только с использованием только этого же ключа или ключа, связанного с ним определенным соотношением.

Аналогичным образом можно представить и расшифрование:

M" = D k2 (C), где:

M" - сообщение, полученное в результате расшифрования,

D (decryption) - функция расшифрования; так же, как и функция зашифрования, выполняет криптографические преобразования над шифртекстом,

k2 - ключ расшифрования.

Для получения в результате расшифрования корректного открытого текста (то есть того самого, который был ранее зашифрован: M" = M), необходимо одновременное выполнение следующих условий:

1. Функция расшифрования должна соответствовать функции зашифрования.

2. Ключ расшифрования должен соответствовать ключу зашифрования.

При отсутствии верного ключа k2 получить исходное сообщение M" = M с помощью правильной функции D невозможно. Под словом "невозможно" в данном случае обычно понимается невозможность вычисления за реальное время при существующих вычислительных ресурсах.

Алгоритмы шифрования можно разделить на две категории (см. рис. 1):

1. Алгоритмы симметричного шифрования.

2. Алгоритмы асимметричного шифрования.

В алгоритмах симметричного шифрования для расшифрования обычно используется тот же самый ключ, что и для зашифрования, или ключ, связанный с ним каким-либо простым соотношением. Последнее встречается существенно реже, особенно в современных алгоритмах шифрования. Такой ключ (общий для зашифрования и расшифрования) обычно называется просто ключом шифрования .

В асимметричном шифровании ключ зашифрования k1 легко вычисляется из ключа k2 таким образом, что обратное вычисление невозможно. Например, соотношение ключей может быть таким:

k1 = a k2 mod p,

где a и p - параметры алгоритма шифрования, имеющие достаточно большую размерность.

Такое соотношение ключей используется и в алгоритмах электронной подписи.

Основной характеристикой алгоритма шифрования является криптостойкость , которая определяет его стойкость к раскрытию методами криптоанализа. Обычно эта характеристика определяется интервалом времени, необходимым для раскрытия шифра.

Симметричное шифрование менее удобно из-за того, что при передаче зашифрованной информации кому-либо необходимо, чтобы адресат заранее получил ключ для расшифрования информации. У асимметричного шифрования такой проблемы нет (поскольку открытый ключ можно свободно передавать по сети), однако, есть свои проблемы, в частности, проблема подмены открытого ключа и медленная скорость шифрования. Наиболее часто асимметричное шифрование используется в паре с симметричным - для передачи ключа симметричного шифрования, на котором шифруется основной объем данных. Впрочем, схемы хранения и передачи ключей - это тема отдельной статьи. Здесь же позволю себе утверждать, что симметричное шифрование используется гораздо чаще асимметричного, поэтому остальная часть статьи будет посвящена только симметричному шифрованию.

Симметричное шифрование бывает двух видов:

· Блочное шифрование - информация разбивается на блоки фиксированной длины (например, 64 или 128 бит), после чего эти блоки поочередно шифруются. Причем, в различных алгоритмах шифрования или даже в разных режимах работы одного и того же алгоритма блоки могут шифроваться независимо друг от друга или "со сцеплением" - когда результат зашифрования текущего блока данных зависит от значения предыдущего блока или от результата зашифрования предыдущего блока.

· Поточное шифрование - необходимо, прежде всего, в тех случаях, когда информацию невозможно разбить на блоки - скажем, некий поток данных, каждый символ которых должен быть зашифрован и отправлен куда-либо, не дожидаясь остальных данных, достаточных для формирования блока. Поэтому алгоритмы поточного шифрования шифруют данные побитно или посимвольно. Хотя стоит сказать, что некоторые классификации не разделяют блочное и поточное шифрование, считая, что поточное шифрование - это шифрование блоков единичной длины.

Рассмотрим, как выглядят изнутри алгоритмы блочного симметричного шифрования.

2.1 Структура алгоритмов шифрования

Подавляющее большинство современных алгоритмов шифрования работают весьма схожим образом: над шифруемым текстом выполняется некое преобразование с участием ключа шифрования, которое повторяется определенное число раз (раундов). При этом, по виду повторяющегося преобразования алгоритмы шифрования принято делить на несколько категорий. Здесь также существуют различные классификации, приведу одну из них. Итак, по своей структуре алгоритмы шифрования классифицируются следующим образом:

1. Алгоритмы на основе сети Фейстеля.

Сеть Фейстеля подразумевает разбиение обрабатываемого блока данных на несколько субблоков (чаще всего - на два), один из которых обрабатывается некоей функцией f() и накладывается на один или несколько остальных субблоков. На рис. 2 приведена наиболее часто встречающаяся структура алгоритмов на основе сети Фейстеля.

Рис. 2. Структура алгоритмов на основе сети Фейстеля.

Дополнительный аргумент функции f() , обозначенный на рис. 2 как Ki , называется ключом раунда . Ключ раунда является результатом обработки ключа шифрования процедурой расширения ключа, задача которой - получение необходимого количества ключей Ki из исходного ключа шифрования относительно небольшого размера (в настоящее время достаточным для ключа симметричного шифрования считается размер 128 бит). В простейших случаях процедура расширения ключа просто разбивает ключ на несколько фрагментов, которые поочередно используются в раундах шифрования; существенно чаще процедура расширения ключа является достаточно сложной, а ключи Ki зависят от значений большинства бит исходного ключа шифрования.

Наложение обработанного субблока на необработанный чаще всего выполняется с помощью логической операции "исключающее или" - XOR (как показано на рис. 2). Достаточно часто вместо XOR здесь используется сложение по модулю 2 n , где n - размер субблока в битах. После наложения субблоки меняются местами, то есть в следующем раунде алгоритма обрабатывается уже другой субблок данных.

Такая структура алгоритмов шифрования получила свое название по имени Хорста Фейстеля (Horst Feistel) - одного из разработчиков алгоритма шифрования Lucifer и разработанного на его основе алгоритма DES (Data Encryption Standard) - бывшего (но до сих пор широко используемого) стандарта шифрования США. Оба этих алгоритма имеют структуру, аналогичную показанной на рис. 2. Среди других алгоритмов, основанных на сети Фейстеля, можно привести в пример отечественный стандарт шифрования ГОСТ 28147-89, а также другие весьма известные алгоритмы: RC5, Blowfish, TEA, CAST-128 и т.д.

На сети Фейстеля основано большинство современных алгоритмов шифрования - благодаря множеству преимуществ подобной структуры, среди которых стоит отметить следующие:

o Алгоритмы на основе сети Фейстеля могут быть сконструированы таким образом, что для зашифрования и расшифрования могут использоваться один и тот же код алгоритма - разница между этими операциями может состоять лишь в порядке применения ключей Ki; такое свойство алгоритма наиболее полезно при его аппаратной реализации или на платформах с ограниченными ресурсами; в качестве примера такого алгоритма можно привести ГОСТ 28147-89.

o Алгоритмы на основе сети Фейстеля являются наиболее изученными - таким алгоритмам посвящено огромное количество криптоаналитических исследований, что является несомненным преимуществом как при разработке алгоритма, так и при его анализе.

Существует и более сложная структура сети Фейстеля, пример которой приведен на рис. 3.

Рис. 3. Структура сети Фейстеля.

Такая структура называется обобщенной или расширенной сетью Фейстеля и используется существенно реже традиционной сети Фейстеля. Примером такой сети Фейстеля может служить алгоритм RC6.

2. Алгоритмы на основе подстановочно-перестановочных сетей (SP-сеть - Substitution-permutation network).

В отличие от сети Фейстеля, SP-сети обрабатывают за один раунд целиком шифруемый блок. Обработка данных сводится, в основном, к заменам (когда, например, фрагмент входного значения заменяется другим фрагментом в соответствии с таблицей замен, которая может зависеть от значения ключа Ki ) и перестановкам, зависящим от ключа Ki (упрощенная схема показана на рис. 4).

Рис. 4. Подстановочно-перестановочная сеть.

Впрочем, такие операции характерны и для других видов алгоритмов шифрования, поэтому, на мой взгляд, название "подстановочно-перестановочная сеть" является достаточно условным.

SP-сети распространены существенно реже, чем сети Фейстеля; в качестве примера SP-сетей можно привести алгоритмы Serpent или SAFER+.

3. Алгоритмы со структурой "квадрат" (Square).

Для структуры "квадрат" характерно представление шифруемого блока данных в виде двумерного байтового массива. Криптографические преобразования могут выполняться над отдельными байтами массива, а также над его строками или столбцами.

Структура алгоритма получила свое название от алгоритма Square, который был разработан в 1996 году Винсентом Риджменом (Vincent Rijmen) и Джоан Деймен (Joan Daemen) - будущими авторами алгоритма Rijndael, ставшего новым стандартом шифрования США AES после победы на открытом конкурсе. Алгоритм Rijndael также имеет Square-подобную структуру; также в качестве примера можно привести алгоритмы Shark (более ранняя разработка Риджмена и Деймен) и Crypton. Недостатком алгоритмов со структурой "квадрат" является их недостаточная изученность, что не помешало алгоритму Rijndael стать новым стандартом США.

Рис. 5. Алгоритм Rijndael.

На рис. 5 приведен пример операции над блоком данных, выполняемой алгоритмом Rijndael.

4. Алгоритмы с нестандартной структурой, то есть те алгоритмы, которые невозможно причислить ни к одному из перечисленных типов. Ясно, что изобретательность может быть безгранична, поэтому классифицировать все возможные варианты алгоритмов шифрования представляется сложным. В качестве примера алгоритма с нестандартной структурой можно привести уникальный по своей структуре алгоритм FROG, в каждом раунде которого по достаточно сложным правилам выполняется модификация двух байт шифруемых данных (см. рис. 6).

Рис. 6. Модификация двух байт шифруемых данных.

Строгие границы между описанными выше структурами не определены, поэтому достаточно часто встречаются алгоритмы, причисляемые различными экспертами к разным типам структур. Например, алгоритм CAST-256 относится его автором к SP-сети, а многими экспертами называется расширенной сетью Фейстеля. Другой пример - алгоритм HPC, называемый его автором сетью Фейстеля, но относимый экспертами к алгоритмам с нестандартной структурой.

3. Применение сим метричного алгоритма шифрования

криптография алгоритм симметричный шифрование

Симметричные методы шифрования удобны тем, что для обеспечения высокого уровня безопасности передачи данных не требуется создания ключей большой длины. Это позволяет быстро шифровать и дешифровать большие объемы информации. Вместе с тем, и отправитель, и получатель информации владеют одним и тем же ключом, что делает невозможным аутентификацию отправителя. Кроме того, для начала работы с применением симметричного алгоритма сторонам необходимо безопасно обменяться секретным ключом, что легко сделать при личной встрече, но весьма затруднительно при необходимости передать ключ через какие-либо средства связи.

Схема работы с применением симметричного алгоритма шифрования состоит из следующих этапов:

стороны устанавливают на своих компьютерах программное обеспечение, обеспечивающее шифрование и расшифровку данных и первичную генерацию секретных ключей;

генерируется секретный ключ и распространяется между участниками информационного обмена. Иногда генерируется список одноразовых ключей. В этом случае для каждого сеанса передачи информации используется уникальный ключ. При этом в начале каждого сеанса отправитель извещает получателя о порядковом номере ключа, который он применил в данном сообщении;

отправитель шифрует информацию при помощи установленного программного обеспечения, реализующего симметричный алгоритм шифрования;

зашифрованная информация передается получателю по каналам связи;

получатель дешифрует информацию, используя тот же ключ, что и отправитель.

Ниже приведен обзор некоторых алгоритмов симметричного шифрования:

DES (Data Encryption Standard). Разработан фирмой IBM и широко используется с 1977 года. В настоящее время несколько устарел, поскольку применяемая в нем длина ключа недостаточна для обеспечения устойчивости к вскрытию методом полного перебора всех возможных значений ключа. Вскрытие этого алгоритма стало возможным благодаря быстрому развитию вычислительной техники, сделавшему с 1977 года огромный скачок;

Triple DES. Это усовершенствованный вариант DES, применяющий для шифрования алгоритм DES три раза с разными ключами. Он значительно устойчивее к взлому, чем DES;

Rijndael. Алгоритм разработан в Бельгии. Работает с ключами длиной 128, 192 и 256 бит. На данный момент к нему нет претензий у специалистов по криптографии;

Skipjack. Алгоритм создан и используется Агентством национальной безопасности США. Длина ключа 80 бит. Шифрование и дешифрование информации производится циклически (32 цикла);

IDEA. Алгоритм запатентован в США и ряде европейских стран. Держатель патента компания Ascom-Tech. Алгоритм использует циклическую обработку информации (8 циклов) путем применения к ней ряда математических операций;

RC4. Алгоритм специально разработан для быстрого шифрования больших объемов информации. Он использует ключ переменной длины (в зависимости от необходимой степени защиты информации) и работает значительно быстрее других алгоритмов. RC4 относится к так называемым потоковым шифрам.

В соответствии с законодательством США (соглашение International Traffic in Arms Peguiation), криптографические устройства, включая программное обеспечение, относится к системам вооружения.

Поэтому при экспорте программной продукции, в которой используется криптография, требуется разрешение Госдепартамента. Фактически экспорт криптографической продукции контролирует NSA (National Security Agency). правительство США очень неохотно выдаёт подобные лицензии, поскольку это может нанести ущерб национальной безопасности США. Вместе с тем совсем недавно компании Hewlett-Packard выдано разрешение на экспорт её криптографического комплекса Ver Secure в Великобританию, Германию, Францию, Данию и Австралию. Теперь НР может эксплуатировать в эти страны системы, использующие 128-битный криптостандарт Triple DES ,который считается абсолютно надёжным.

ЗАКЛЮЧЕНИЕ

Выбор для конкретных ИС должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты в общем-то должен опираться на какие-то критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности криптографических систем.

Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей. По сути это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей.

Однако, этот критерий не учитывает других важных требований к криптосистемам:

* невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры,

* совершенство используемых протоколов защиты,

* минимальный объем используемой ключевой информации,

* минимальная сложность реализации (в количестве машинных операций), ее стоимость,

* высокая оперативность.

Желательно конечно использование некоторых интегральных показателей, учитывающих указанные факторы.

Для учета стоимости, трудоемкости и объема ключевой информации можно использовать удельные показатели - отношение указанных параметров к мощности множества ключей шифра.

Часто более эффективным при выборе и оценке криптографической системы является использование экспертных оценок и имитационное моделирование.

В любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в ИС информации.

Эллиптические функции также относятся к симметричным методам шифрования.

Эллиптические кривые - математические объекты, которые математики интенсивно изучают начиная с 17 - го века. Н.Коблиц и В. Миллер независимо друг от друга предложили системы системы криптозащиты с открытым ключом, использующие для шифрования свойства аддитивной группы точек на эллиптической кривой. Эти работы легли в основу криптографии на основе алгоритма эллиптических кривых.

Множество исследователей и разработчиков испытывали алгоритм ЕСС на прочность. Сегодня ЕСС предлагает более короткий и быстрый открытый ключ, обеспечивающий практичную и безопасную технологию, применимую в различных областях. Применение криптографии на основе алгоритма ЕСС не требует дополнительной аппаратной поддержки в виде криптографического сопроцессора. Всё это позволяет уже сейчас применять криптографические системы с открытым ключом и для создания недорогих смарт-карт.

Список литературы

1) Чмора А.Л. Современная прикладная криптография. 2-е изд., стер. - М.: Гелиос АРВ, 2004. - 256с.: ил.

2) А.Г. Ростовцев, Н.В. Михайлова Методы криптоанализа классических шифров.

3) А. Саломаа Криптография с открытым ключом.

4) Герасименко В.А. Защита информации в автоматизированных системах обработки данных кн. 1.-М.: Энергоатомиздат. -2004.-400с.

5) Грегори С. Смит. Программы шифрования данных // Мир ПК -2007. -№3.

6) Ростовцев А. Г., Михайлова Н. В. Методы криптоанализа классических шифров. -М.: Наука, 2005. -208 с.

Размещено на http://www.allbest.ru/

Подобные документы

    История появления симметричных алгоритмов шифрования. Роль симметричного ключа в обеспечении степени секретности сообщения. Диффузия и конфузия как способы преобразования бит данных. Алгоритмы шифрования DES и IDEA, их основные достоинства и недостатки.

    лабораторная работа , добавлен 18.03.2013

    Особенности шифрования данных, предназначение шифрования. Понятие криптографии как науки, основные задачи. Анализ метода гаммирования, подстановки и метода перестановки. Симметрические методы шифрования с закрытым ключом: достоинства и недостатки.

    курсовая работа , добавлен 09.05.2012

    Принцип программной реализации классических криптографических методов. Метод шифрования с использованием таблицы Виженера. Создание текстового редактора "Блокнот", содержащего методы шифрования. Вербальный алгоритм и программа для методов шифрования.

    курсовая работа , добавлен 20.01.2010

    История криптографии. Сравнение алгоритмов шифрования, применение в операционной системе. Анализ продуктов в области пользовательского шифрования. Включение и отключение шифрования на эллиптических кривых. Использование хеш-функции. Электронная подпись.

    курсовая работа , добавлен 18.09.2016

    Появление шифров, история эволюции криптографии. Способ приложения знаний особенностей естественного текста для нужд шифрования. Критерии определения естественности. Способ построения алгоритмов симметричного шифрования. Криптосистема с открытым ключом.

    реферат , добавлен 31.05.2013

    Криптография и шифрование. Симметричные и асимметричные криптосистемы. Основные современные методы шифрования. Алгоритмы шифрования: замены (подстановки), перестановки, гаммирования. Комбинированные методы шифрования. Программные шифраторы.

    реферат , добавлен 24.05.2005

    Автоматизация процесса шифрования на базе современных информационных технологий. Криптографические средства защиты. Управление криптографическими ключами. Сравнение симметричных и асимметричных алгоритмов шифрования. Программы шифрования информации.

    курсовая работа , добавлен 02.12.2014

    История алгоритмов симметричного шифрования (шифрования с закрытым ключом). Стандарты на криптографические алгоритмы. Датчики случайных чисел, создание ключей. Сфера интересов криптоанализа. Системы электронной подписи. Обратное преобразование информации.

    краткое изложение , добавлен 12.06.2013

    Основные методы криптографической защиты информации. Система шифрования Цезаря числовым ключом. Алгоритмы двойных перестановок и магические квадраты. Схема шифрования Эль Гамаля. Метод одиночной перестановки по ключу. Криптосистема шифрования данных RSA.

    лабораторная работа , добавлен 20.02.2014

    Краткая история развития криптографических методов защиты информации. Сущность шифрования и криптографии с симметричными ключами. Описание аналитических и аддитивных методов шифрования. Методы криптографии с открытыми ключами и цифровые сертификаты.